Circles

Sorry, no results were found.

Posts

21 hrs ago


The gut microbiota can affect neurologic disease by shaping microglia, the primary immune cell in the central nervous system (CNS). While antibiotics improve models of Alzheimer's disease, Parkinson's disease, multiple sclerosis, and the C9orf72 model of amyotrophic lateral sclerosis (ALS), antibiotics worsen disease progression the in SOD1
model of ALS. In ALS, microglia transition from a homeostatic to a neurodegenerative (MGnD) phenotype and contribute to disease pathogenesis, but whether this switch can be affected by the microbiota has not been investigated.

In this short report, we found that a low-dose antibiotic treatment worsened motor function and decreased survival in the SOD1 mice, which is consistent with studies using high-dose antibiotics. We also found that co-housing SOD1 mice with wildtype mice had no effect on disease progression. We investigated changes in the microbiome and found that antibiotics reduced Akkermansia and butyrate-producing bacteria, which may be beneficial in ALS, and cohousing had little effect on the microbiome. To investigate changes in CNS resident immune cells, we sorted spinal cord microglia and found that antibiotics downregulated homeostatic genes and increased neurodegenerative disease genes in SOD1 mice. Furthermore, antibiotic-induced changes in microglia preceded changes in motor function, suggesting that this may be contributing to disease progression.

Our findings suggest that the microbiota play a protective role in the SOD1 model of ALS by restraining MGnD microglia, which is opposite to other neurologic disease models, and sheds new light on the importance of disease-specific interactions between microbiota and microglia. Video abstract.
Our findings suggest that the microbiota play a protective role in the SOD1 model of ALS by restraining MGnD microglia, which is opposite to other neurologic disease models, and sheds new light on the importance of disease-specific interactions between microbiota and microglia. Video abstract.
The potential to distribute bacteria resistant to antimicrobial drugs in the meat supply is a public health concern. Market cows make up a fifth of the U.S. beef produced but little is known about the entire population of bacteria (the microbiome) and entirety of all resistance genes (the resistome) that are found in this population. The objective of this study was to characterize and compare the resistomes and microbiome of beef, dairy, and organic dairy market cows at slaughter.

Fifty-four (N = 54) composite samples of both colon content and meat trimmings rinsate samples were collected over six visits to two harvest facilities from cows raised in three different production systems conventional beef, conventional dairy, and organic dairy (n = 3 samples per visit per production system). Metagenomic DNA obtained from samples were analyzed using target-enriched sequencing (resistome) and 16S rRNA gene sequencing (microbiome).

All colon content samples had at least one identifiable antimicrobial resistanczation of an important segment of the beef industry and highlight the effect that the production system where cattle are raised and the harvest facilities where an animal is processed can impact associated microbiome and resistomes.
Diagnostic performance of optical coherence tomography (OCT) to detect Alzheimer's disease (AD) and mild cognitive impairment (MCI) remains limited. We assessed whether compensating the circumpapillary retinal nerve fiber layer (cpRNFL) thickness for multiple demographic and anatomical factors as well as the combination of macular layers improves the detection of MCI and AD.

This cross-sectional study of 62 AD (n = 92 eyes), 108 MCI (n = 158 eyes), and 55 cognitively normal control (n = 86 eyes) participants. Macular ganglion cell complex (mGCC) thickness was extracted. Circumpapillary retinal nerve fiber layer (cpRNFL) measurement was compensated for several ocular factors. Thickness measurements and their corresponding areas under the receiver operating characteristic curves (AUCs) were compared between the groups. The main outcome measure was OCT thickness measurements.

Participants with MCI/AD showed significantly thinner measured and compensated cpRNFL, mGCC, and altered retinal vessel density (p< 0.05). Compensated RNFL outperformed measured RNFL for discrimination of MCI/AD (AUC = 0.74 vs 0.69; p= 0.026). Combining macular and compensated cpRNFL parameters provided the best detection of MCI/AD (AUC = 0.80 vs 0.69; p< 0.001).

Accounting for interindividual variations of ocular anatomical features in cpRNFL measurements and incorporating macular information may improve the identification of high-risk individuals with early cognitive impairment.
Accounting for interindividual variations of ocular anatomical features in cpRNFL measurements and incorporating macular information may improve the identification of high-risk individuals with early cognitive impairment.
Revision knee arthroplasty presents a number of challenges, including management of bone loss. The goal in managing moderate to large bone defects is fixation that is sufficient enough to allow early weight-bearing. The purpose of this study was to describe the surgical technique and clinical and radiographic outcomes of patients treated with porous tantalum metaphyseal cones in combination with long uncemented diaphyseal-engaging stems to manage tibial bone loss in revision total knee arthroplasty (TKA).

Thirty-six aseptic revision TKAs were performed at our institution between 2016 and 2019 by two senior authors. A single trabecular metal tantalum cone combined with a long (100 or 155mm) press fit, diaphyseal-engaging stem was used in all cases to reconstruct metaphyseal bone defects and to augment tibial fixation. Cemented stems were excluded. The tibiofemoral angle was measured along the tibial and femoral shaft axes on the weight-bearing anteroposterior radiograph at final follow-up (range 15-56monthng all-cause revision as the endpoint.
Hybrid fixation with uncemented diaphyseal-engaging stems and porous tantalum metaphyseal cones resulted in radiographic lack of osteolysis, good clinical outcomes, and survivorship of 91.7% at a median follow-up of 33 months when considering all-cause revision as the endpoint.
Amyotrophic lateral sclerosis (ALS) is characterized by a progressive loss of motor neurons (MNs), leading to paralysis, respiratory failure and death within 2-5years of diagnosis. The exact mechanisms of sporadic ALS, which comprises 90% of all cases, remain unknown. In familial ALS, mutations in superoxide dismutase (SOD1) cause 10% of cases.

ALS patient-derived human-induced pluripotent stem cells (ALS hiPSCs, harboring the SOD1
mutation), were differentiated to MNs (ALS-MNs). The neuroprotective effects of conditioned medium (CM) of hESCs (H9), wt hiPSCs (WTC-11) and the ALS iPSCs, on MN apoptosis and viability, formation and maintenance of neurites, mitochondrial activity and expression of inflammatory genes, were examined. For in vivo studies, 200μl of CM from the ALS iPSCs (CS07 and CS053) was injected subcutaneously into the ALS model mice (transgenic for the human SOD1
mutation). Animal agility and strength, muscle innervation and mass, neurological score, onset of paralysis and lifespan of tly stabilized MN mitochondria and attenuated inflammatory genes. Biochemical characterization, comparative proteomics, and epigenetic screen all suggested that it was the interactome of several key proteins from different fractions of PSC-CM that delivered the multifaceted neuroprotection.

This work introduces and mechanistically characterizes a new biologic for treating ALS and other complex neurodegenerative diseases.
This work introduces and mechanistically characterizes a new biologic for treating ALS and other complex neurodegenerative diseases.
A distal femoral trial component was manufactured, and flexion gap size and inclination were evaluated with or without the distal femoral trial component in total knee arthroplasty (TKA). This study aimed to evaluate the effect of the distal femoral trial component on flexion gap size and joint inclination in posterior-stabilized (PS)-TKA.

A total of 84 patients with medial osteoarthritis who underwent mobile-bearing PS-TKA using modified gap techniques were included in this retrospective study. The flexion gap size and inclination before and after setting the distal femoral trial component were evaluated and compared with the final gap size and inclination.

The joint gap size and inclination were significantly lower in those with than in those without the distal femoral trial component (P = 0.005, P < 0.001). The final gap size and inclination were similar to the gap size and inclination with the distal trial component (P = 0.468, P = 0.158).

The joint gap size and medial tension in PS-TKA were significantly reduced after setting the distal femoral trial component. The flexion gap measured using the distal femoral trial component was similar to that when the final trial component was set. To more accurately perform the gap technique TKA, the flexion gap should be measured using the distal femoral trial component.
The joint gap size and medial tension in PS-TKA were significantly reduced after setting the distal femoral trial component. https://www.selleckchem.com/products/emricasan-idn-6556-pf-03491390.html The flexion gap measured using the distal femoral trial component was similar to that when the final trial component was set. To more accurately perform the gap technique TKA, the flexion gap should be measured using the distal femoral trial component.
Despite accumulating epidemiological studies support that diabetes increases the risk of Alzheimer's disease (AD), the causal associations between diabetes and AD remain inconclusive. The present study aimed to explore i) whether diabetes is causally related to the increased risk of AD; ii) and if so, which diabetes-related physiological parameter is associated with AD; iii) why diabetes drugs can be used as candidates for the treatment of AD. Two-sample Mendelian randomization (2SMR) was employed to perform the analysis.

Firstly, the 2SMR analysis provided a suggestive association between genetically predicted type 1 diabetes (T1D) and a slightly increased AD risk (OR = 1.04, 95% CI = [1.01, 1.06]), and type 2 diabetes (T2D) showed a much stronger association with AD risk (OR = 1.34, 95% CI = [1.05, 1.70]). Secondly, further 2SMR analysis revealed that diabetes-related physiological parameters like fasting blood glucose and total cholesterol levels might have a detrimental role in the development of AD. Thirdly, we obtained 74 antidiabetic drugs and identified SNPs to proxy the targets of antidiabetic drugs. 2SMR analysis indicated the expression of three target genes, ETFDH, GANC, and MGAM, were associated with the increased risk of AD, while CPE could be a protective factor for AD. Besides, further PPI network found that GANC interacted with MGAM, and further interacted with CD33, a strong genetic locus related to AD.

In conclusion, the present study provides evidence of a causal association between diabetes and increased risk of AD, and also useful genetic clues for drug development.
In conclusion, the present study provides evidence of a causal association between diabetes and increased risk of AD, and also useful genetic clues for drug development.

10/12/2024


Breakthrough SARS-CoV-2 infections are more frequent (5.8% (201/3441) vs 3.9% (66/1682), p = 0.0039) in patients treated with infliximab than vedolizumab, and the risk of breakthrough SARS-CoV-2 infection is predicted by peak anti-S RBD antibody concentration after two vaccine doses. Irrespective of the treatments, higher, more sustained antibody levels are observed in patients with a history of SARS-CoV-2 infection prior to vaccination. Our results thus suggest that adapted vaccination schedules may be required to induce immunity in at-risk, anti-TNF-treated patients.Plasmon polaritons in topological insulators attract attention from a fundamental perspective and for potential THz photonic applications. Although polaritons have been observed by THz far-field spectroscopy on topological insulator microstructures, real-space imaging of propagating THz polaritons has been elusive so far. Here, we show spectroscopic THz near-field images of thin Bi2Se3 layers (prototypical topological insulators) revealing polaritons with up to 12 times increased momenta as compared to photons of the same energy and decay times of about 0.48 ps, yet short propagation lengths. From the images we determine and analyze the polariton dispersion, showing that the polaritons can be explained by the coupling of THz radiation to various combinations of Dirac and massive carriers at the Bi2Se3 surfaces, massive bulk carriers and optical phonons. Our work provides critical insights into the nature of THz polaritons in topological insulators and establishes instrumentation and methodology for imaging of THz polaritons.π-Extended tetrasubstituted olefins are widely found motifs in natural products, leading drugs, and agrochemicals. Thus, development of modular strategies for the synthesis of complex all-carbon-substituted olefins always draws attention. The difunctionalization of unsymmetrical alkynes is an attractive approach but it has remained faced with regioselectivity issues. Here we report the discovery of a regio- and stereoselective syn-1,2-dicarbofunctionalization of unsymmetrical internal alkynes. A cationic Pd-catalyzed three-component coupling of aryl diazonium salts, aryl boronic acids (or olefins) and yne-acetates enables access to all-carbon substituted unsymmetrical olefins. The transformation features broad scope with labile functional group tolerance, building broad chemical space of structural diversity (94 molecules). The value of this synthetic method is demonstrated by the direct transformation of natural products and drug candidates containing yne-acetates, to enable highly substituted structurally complex allyl acetate analogues of biologically important compounds. Synthetic versatility of the carboxylate bearing highly substituted olefins is also presented. The reaction outcome is attributed to the in situ formation of stabilized cationic aryl-Pd species, which regulates regioselective aryl-palladation of unsymmetrical yne-acetates. Control experiments reveal the synergy between the carboxylate protecting group and the cationic Pd-intermediate in the regioselectivity and reaction productivity; density functional theory (DFT) studies rationalize the selectivity of the reaction.Depression, anxiety, obesity and substance use are heritable and often co-occur. However, the mechanisms underlying this co-occurrence are not fully understood. We estimated their familial aggregation and co-aggregation as well as heritabilities and genetic correlations to improve etiological understanding. Data came from the multi-generational population-based Lifelines Cohort Study (n = 162,439). Current depression and anxiety were determined using the MINI International Neuropsychiatric Interview. Smoking, alcohol and drug use were assessed by self-report questionnaires. Body mass index (BMI) and obesity were calculated by measured height and weight. Modified Cox proportional hazards models estimated recurrence risk ratios (λR), and restricted maximum likelihood variance decomposition methods estimated heritabilities (h2) and genetic correlations (rG). All analyses were adjusted for age, age2, and sex. Depression, anxiety, obesity and substance use aggregated within families (λR first-degree relative = 1.08-2.74) as well as between spouses (λR = 1.11-6.60). All phenotypes were moderately heritable (from h2depression = 0.25 to h2BMI = 0.53). Depression, anxiety, obesity and smoking showed positive familial co-aggregation. That is, each of these traits confers increased risk on the other ones within families, consistent with the positive genetic correlations between these phenotypes (rG = 0.16-0.94). The exception was obesity, which showed a negative co-aggregation with alcohol and drug use and vice versa, consistent with the negative genetic correlations of BMI with alcohol (rG = -0.14) and soft drug use (rG = -0.10). Patterns of cross-phenotype recurrence risk highlight the co-occurrence among depression, anxiety, obesity and substance use within families. Patterns of genetic overlap between these phenotypes provide clues to uncovering the mechanisms underlying familial co-aggregation.GNE-493 is a novel PI3K/mTOR dual inhibitor with improved metabolic stability, oral bioavailability, and excellent pharmacokinetic parameters. Here GNE-493 potently inhibited viability, proliferation, and migration in different primary and established (LNCaP and PC-3 lines) prostate cancer cells, and provoking apoptosis. GNE-493 blocked Akt-mTOR activation in primary human prostate cancer cells. A constitutively-active mutant Akt1 restored Akt-mTOR activation but only partially ameliorated GNE-493-induced prostate cancer cell death. Moreover, GNE-493 was still cytotoxic in Akt1/2-silenced primary prostate cancer cells. Significant oxidative stress and programmed necrosis cascade activation were detected in GNE-493-treated prostate cancer cells. Moreover, GNE-493 downregulated Sphingosine Kinase 1 (SphK1), causing ceramide accumulation in primary prostate cancer cells. Daily single dose GNE-493 oral administration robustly inhibited the growth of the prostate cancer xenograft in the nude mice. Akt-mTOR inactivation, SphK1 downregulation, ceramide level increase, and oxidative injury were detected in GNE-493-treated prostate cancer xenograft tissues. Together, GNE-493 inhibited prostate cancer cell growth possibly through the Akt-mTOR-dependent and -independent mechanisms.Prior research has demonstrated high levels of cognitive and physical functional impairments in World Trade Center (WTC) responders. A follow-up neuroimaging study identified changes to white matter connectivity within the cerebellum in responders with cognitive impairment (CI). In the first study to examine cerebellar cortical thickness in WTC responders with CI, we fielded a structural magnetic resonance imaging protocol. WTC responders (N = 99) participated in a structural magnetic resonance imaging (MRI) study, of whom 48 had CI. Participants with CI did not differ demographically or by intracranial volume when compared to cognitively unimpaired participants. MRIs were processed using the CERES imaging pipeline; bilateral cortical thickness in 12 cerebellar lobules was reported. Analyses were completed comparing mean cerebellar cortical thickness across groups. Lobules were examined to determine the location and functional correlates of reduced cerebellar cortical thickness. Multivariable-adjusted analyses accounted for the false discovery rate. Mean cerebellar cortical thickness was reduced by 0.17 mm in responders with CI. Decrements in cerebellar cortical thickness were symmetric and located in the Cerebellar Crus (I and II), and in Lobules IV, VI, VIIb, VIIIa, VIIIb, and IX. Cerebellar cortical thickness was associated with episodic memory, response speed, and tandem balance. WTC responders with CI had evidence of reduced cerebellar cortical thickness that was present across lobules in a pattern unique to this cohort.Posttraumatic stress disorder (PTSD) poses an ongoing challenge to society, to health systems, and to the trauma victims themselves. Today PTSD is often considered an incurable chronic problem that lacks effective treatment. While PTSD is closely related to memory, it also affects many physiological systems. PTSD is usually treated with medications and psychotherapy with moderate success, leaving a substantial proportion of patients with enduring distress and disability. Therefore, a search for better treatment options is vital. In this paper, we propose a model in which a conversation-based technique is integrated with bodily manipulation through acupuncture. This approach first emerged in clinical experience showing intriguing results from treating PTSD patients using acupuncture as a main strategy. Its theoretical foundations derive from the clinic and rely on contemporary neuroscience's understanding of memory consolidation and reconsolidation processes. Research shows that acupuncture can have potentially positive effects at three levels (a) achieving a balance between sympathetic and parasympathetic neural activity; (b) reducing activation in the limbic system, hence inducing a calming effect; (c) reshaping the functional connectivity map within important and relevant cortical regions that encompass the default-mode network. We suggest that coupling traumatic memory retrieval leading to reconsolidation, combined with acupuncture, offers considerable potential for positive clinical improvement in patients with PTSD. This may explain the positive results of the described case studies and can pave the path for future advances in research and treatment in this field.The genomic effects of circulating glucocorticoids are particularly relevant in cortico-limbic structures, which express a high concentration of steroid hormone receptors. To date, no studies have investigated genomic differences in hippocampal subregions, namely the dorsal (dHPC) and ventral (vHPC) hippocampus, in preclinical models treated with exogenous glucocorticoids. Chronic oral corticosterone (CORT) in mouse is a pharmacological approach that disrupts the activity of the hypothalamic-pituitary-adrenal axis, increases affective behavior, and induces genomic changes after stress in the HPC of wildtype (WT) mice and mice heterozygous for the gene coding for brain-derived neurotrophic factor Val66Met (hMet), a variant associated with genetic susceptibility to stress. Using RNA-sequencing, we investigated the genomic signatures of oral CORT in the dHPC and vHPC of WT and hMet male and female mice, and examined sex and genotype differences in response to oral CORT. https://www.selleckchem.com/products/valemetostat-ds-3201.html Males under CORT showed lower glycemia andtial methylation of Nr3c1 selectively in hMet females.The goal of spectral imaging is to capture the spectral signature of a target. Traditional scanning method for spectral imaging suffers from large system volume and low image acquisition speed for large scenes. In contrast, computational spectral imaging methods have resorted to computation power for reduced system volume, but still endure long computation time for iterative spectral reconstructions. Recently, deep learning techniques are introduced into computational spectral imaging, witnessing fast reconstruction speed, great reconstruction quality, and the potential to drastically reduce the system volume. In this article, we review state-of-the-art deep-learning-empowered computational spectral imaging methods. They are further divided into amplitude-coded, phase-coded, and wavelength-coded methods, based on different light properties used for encoding. To boost future researches, we've also organized publicly available spectral datasets.

10/12/2024


Imaging mass cytometry (IMC) is among the first tools with the capacity for multiplex analysis of more than 40 targets, which provides a novel approach to biomarker discovery. https://www.selleckchem.com/products/bi-2852.html Here, we used IMC to characterize the tumor microenvironment of patients with metastatic melanoma who received immunotherapy in efforts to find indicative factors of treatment response. In spite of the new power of IMC, the image analysis aspects are still limited by the challenges of cell segmentation.

Here, rather than segment, we performed image analysis using a newly designed version of the AQUA software to measure marker intensity in molecularly defined compartments tumor cells, stroma, T cells, B cells, and macrophages. IMC data were compared with quantitative immunofluorescence (QIF) and digital spatial profiling.

Validation of IMC results for immune markers was confirmed by regression with additional multiplexing methods and outcome assessment. Multivariable analyses by each compartment revealed significant associations oficative biomarkers for immunotherapy in metastatic melanoma, including B2M.
The World Trade Center (WTC) attack of September 11, 2001 created an unprecedented environmental exposure to known and suspected carcinogens. High incidence of multiple myeloma and precursor conditions has been reported among first responders to the WTC disaster. To expand on our prior screening studies, and to characterize the genomic impact of the exposure to known and potential carcinogens in the WTC debris, we were motivated to perform whole-genome sequencing (WGS) of WTC first responders and recovery workers who developed a plasma cell disorder after the attack.

We performed WGS of nine CD138-positive bone marrow mononuclear samples from patients who were diagnosed with plasma cell disorders after the WTC disaster.

No significant differences were observed in comparing the post-WTC driver and mutational signature landscapes with 110 previously published WGSs from 56 patients with multiple myeloma and the CoMMpass WGS cohort (
= 752). Leveraging constant activity of the single-base substitution mutational signatures 1 and 5 over time, we estimated that tumor-initiating chromosomal gains were windowed to both pre- and post-WTC exposure.

Although limitations in sample size preclude any definitive conclusions, our findings suggest that the observed increased incidence of plasma cell neoplasms in this population is due to complex and heterogeneous effects of the WTC exposure that may have initiated or contributed to progression of malignancy.
Although limitations in sample size preclude any definitive conclusions, our findings suggest that the observed increased incidence of plasma cell neoplasms in this population is due to complex and heterogeneous effects of the WTC exposure that may have initiated or contributed to progression of malignancy.
Immune checkpoint inhibition (ICI) alone is not active in mismatch repair-proficient (MMR-P) metastatic colorectal cancer (mCRC), nor does radiotherapy alone result in objective systemic benefit. However, combined radiotherapy plus ICI can induce systemic antitumor immunity in preclinical and clinical models.

In this single-center, phase II study, patients with chemotherapy-refractory MMR-P mCRC received durvalumab 1,500 mg plus tremelimumab 75 mg every 4 weeks plus radiotherapy. The primary endpoint was objective response rate (ORR) in nonirradiated lesions. Treatment and efficacy were correlated with peripheral immune cell profiles.

We enrolled 24 patients, and report outcomes after a median follow-up of 21.8 (range 15.9-26.3) months. link2 The ORR was 8.3% (2 patients) [95% confidence interval (CI), 1.0-27.0]. The median progression-free survival was 1.8 (95% CI, 1.7-1.9) months, median overall survival was 11.4 (95% CI, 10.1-17.4) months. Twenty five percent of patients (
= 6) had treatment-related gradis feasible in MMR-P mCRC with a manageable safety profile. Further studies of novel immunotherapy combinations, and identification of biomarkers predictive of abscopal response are warranted.
Metastatic castration-resistant prostate cancer (mCRPC) remains a disease with high unmet medical need, as most patients do not achieve durable response with available treatments. Prostate-specific membrane antigen (PSMA) is a compelling target for mCRPC. It is highly expressed by primary and metastatic prostate cancer cells, with increased expression after progression on androgen deprivation therapy.

We developed AMG 160, a half-life extended, bispecific T-cell engager immuno-oncology therapy that binds PSMA on prostate cancer cells and cluster of differentiation 3 on T cells for treatment of mCRPC. AMG 160 was evaluated
and in mCRPC xenograft models. AMG 160 tolerability was assessed in nonhuman primates (NHP). AMG 160 activity as monotherapy and in combination with a PSMA-imaging agent, novel hormonal therapy, and immune checkpoint blockade was evaluated.

AMG 160 induces potent, specific killing of PSMA-expressing prostate cancer cell lines
, with half-maximal lysis of 6-42 pmol/L.
, AMG 160 administered weekly at 0.2 mg/kg engages T cells administered systemically and promotes regression of established 22Rv-1 mCRPC xenograft tumors. AMG 160 is compatible with the imaging agent gallium 68-labeled PSMA-11, and shows enhanced cytotoxic activity when combined with enzalutamide or an anti-programmed death-1 antibody. AMG 160 exhibits an extended half-life and has an acceptable safety profile in NHPs.

The preclinical characterization of AMG 160 highlights its potent antitumor activity
and
, and its potential for use with known diagnostic or therapeutic agents in mCRPC. These data support the ongoing clinical evaluation of AMG 160 in patients with mCRPC.
.
The preclinical characterization of AMG 160 highlights its potent antitumor activity in vitro and in vivo, and its potential for use with known diagnostic or therapeutic agents in mCRPC. These data support the ongoing clinical evaluation of AMG 160 in patients with mCRPC.See related commentary by Kamat et al., p. link3 2675.
The CROSS trial established neoadjuvant chemoradiotherapy (nCRT) for patients with resectable esophageal adenocarcinoma (rEAC). In the PERFECT trial, we investigated the feasibility and efficacy of nCRT combined with programmed-death ligand-1 (PD-L1) inhibition for rEAC.

Patients with rEAC received nCRT according to the CROSS regimen combined with five cycles of atezolizumab (1,200 mg). The primary endpoint was the feasibility of administering five cycles of atezolizumab in ≥75% patients. A propensity score-matched nCRT cohort was used to compare pathologic response, overall survival, and progression-free survival. Exploratory biomarker analysis was performed on repeated tumor biopsies.

We enrolled 40 patients of whom 85% received all cycles of atezolizumab. Immune-related adverse events of any grade were observed in 6 patients. In total, 83% proceeded to surgery. Reasons for not undergoing surgery were progression (
= 4), patient choice (
= 2), and death (
= 1). The pathologic complete response rate was 25% (10/40). No statistically significant difference in response or survival was found between the PERFECT and the nCRT cohort. Baseline expression of an established IFNγ signature was higher in responders compared with nonresponders (
= 0.043). On-treatment nonresponders showed either a high number of cytotoxic lymphocytes (CTL) with a transcriptional signature consistent with expression of immune checkpoints, or a low number of CTLs.

Combining nCRT with atezolizumab is feasible in patients with rEAC. On the basis of our exploratory biomarker study, future studies are necessary to elucidate the potential of neoadjuvant immunotherapy in patient subgroups.
.
Combining nCRT with atezolizumab is feasible in patients with rEAC. On the basis of our exploratory biomarker study, future studies are necessary to elucidate the potential of neoadjuvant immunotherapy in patient subgroups.See related commentary by Catenacci, p. 3269.
Actionable mutations can guide genotype-directed matched therapy. We evaluated the utility of tissue-based and plasma-based genotyping for the identification of actionable mutations and selection of matched therapy in patients with metastatic breast cancer (MBC).

Patients with MBC who underwent tissue genotyping (institutional platform, 91-gene assay) or plasma-based cell-free DNA (cfDNA, Guardant360, 73-gene assay) between January 2016 and December 2017 were included. A chart review of records to identify subtype, demographics, treatment, outcomes, and tissue genotyping or cfDNA results was performed. The incidence of actionable mutations and the selection of matched therapy in tissue genotyping or cfDNA cohorts was determined. The impact of matched therapy status on overall survival (OS) in tissue genotyping or cfDNA subgroups was determined with Cox regression analysis.

Of 252 patients who underwent cfDNA testing, 232 (92%) had detectable mutations, 196 (78%) had actionable mutations, and 86 (34%) received matched therapy. Of 118 patients who underwent tissue genotyping, 90 (76%) had detectable mutations, 59 (50%) had actionable mutations, and 13 (11%) received matched therapy. For cfDNA patients with actionable mutations, matched versus nonmatched therapy was associated with better OS [HR 0.41, 95% confidence interval (CI) 0.23-0.73,
= 0.002], and this remained significant in a multivariable analysis correcting for age, subtype, visceral metastases, and brain metastases (HR = 0.46, 95% CI 0.26-0.83,
= 0.010).

Plasma-based genotyping identified high rates of actionable mutations, which was associated with significant application of matched therapy and better OS in patients with MBC.
.
Plasma-based genotyping identified high rates of actionable mutations, which was associated with significant application of matched therapy and better OS in patients with MBC.See related commentary by Rugo and Huppert, p. 3275.
Recent evidence has shown adverse oncological outcomes when minimally invasive surgery is used in early-stage cervical cancer. The objective of this study was to compare disease-free survival in patients that had undergone radical hysterectomy and pelvic lymphadenectomy, either by laparoscopy or laparotomy.

We performed a multicenter, retrospective cohort study of patients with cervical cancer stage IA1 with lymph-vascular invasion, IA2, and IB1 (FIGO 2009 classification), between January 1, 2006 to December 31, 2017, at seven cancer centers from six countries. We included squamous, adenocarcinoma, and adenosquamous histologies. We used an inverse probability of treatment weighting based on propensity score to construct a weighted cohort of women, including predictor variables selected a priori with the possibility of confounding the relationship between the surgical approach and survival. We estimated the HR for all-cause mortality after radical hysterectomy with weighted Cox proportional hazard models.
laparoscopy was associated with worse disease-free survival, compared to laparotomy.
In this retrospective multicenter study, laparoscopy was associated with worse disease-free survival, compared to laparotomy.

Videos

Sorry, no results were found.

Circles

Sorry, no results were found.

Videos

Sorry, no results were found.

Posts

21 hrs ago


The gut microbiota can affect neurologic disease by shaping microglia, the primary immune cell in the central nervous system (CNS). While antibiotics improve models of Alzheimer's disease, Parkinson's disease, multiple sclerosis, and the C9orf72 model of amyotrophic lateral sclerosis (ALS), antibiotics worsen disease progression the in SOD1
model of ALS. In ALS, microglia transition from a homeostatic to a neurodegenerative (MGnD) phenotype and contribute to disease pathogenesis, but whether this switch can be affected by the microbiota has not been investigated.

In this short report, we found that a low-dose antibiotic treatment worsened motor function and decreased survival in the SOD1 mice, which is consistent with studies using high-dose antibiotics. We also found that co-housing SOD1 mice with wildtype mice had no effect on disease progression. We investigated changes in the microbiome and found that antibiotics reduced Akkermansia and butyrate-producing bacteria, which may be beneficial in ALS, and cohousing had little effect on the microbiome. To investigate changes in CNS resident immune cells, we sorted spinal cord microglia and found that antibiotics downregulated homeostatic genes and increased neurodegenerative disease genes in SOD1 mice. Furthermore, antibiotic-induced changes in microglia preceded changes in motor function, suggesting that this may be contributing to disease progression.

Our findings suggest that the microbiota play a protective role in the SOD1 model of ALS by restraining MGnD microglia, which is opposite to other neurologic disease models, and sheds new light on the importance of disease-specific interactions between microbiota and microglia. Video abstract.
Our findings suggest that the microbiota play a protective role in the SOD1 model of ALS by restraining MGnD microglia, which is opposite to other neurologic disease models, and sheds new light on the importance of disease-specific interactions between microbiota and microglia. Video abstract.
The potential to distribute bacteria resistant to antimicrobial drugs in the meat supply is a public health concern. Market cows make up a fifth of the U.S. beef produced but little is known about the entire population of bacteria (the microbiome) and entirety of all resistance genes (the resistome) that are found in this population. The objective of this study was to characterize and compare the resistomes and microbiome of beef, dairy, and organic dairy market cows at slaughter.

Fifty-four (N = 54) composite samples of both colon content and meat trimmings rinsate samples were collected over six visits to two harvest facilities from cows raised in three different production systems conventional beef, conventional dairy, and organic dairy (n = 3 samples per visit per production system). Metagenomic DNA obtained from samples were analyzed using target-enriched sequencing (resistome) and 16S rRNA gene sequencing (microbiome).

All colon content samples had at least one identifiable antimicrobial resistanczation of an important segment of the beef industry and highlight the effect that the production system where cattle are raised and the harvest facilities where an animal is processed can impact associated microbiome and resistomes.
Diagnostic performance of optical coherence tomography (OCT) to detect Alzheimer's disease (AD) and mild cognitive impairment (MCI) remains limited. We assessed whether compensating the circumpapillary retinal nerve fiber layer (cpRNFL) thickness for multiple demographic and anatomical factors as well as the combination of macular layers improves the detection of MCI and AD.

This cross-sectional study of 62 AD (n = 92 eyes), 108 MCI (n = 158 eyes), and 55 cognitively normal control (n = 86 eyes) participants. Macular ganglion cell complex (mGCC) thickness was extracted. Circumpapillary retinal nerve fiber layer (cpRNFL) measurement was compensated for several ocular factors. Thickness measurements and their corresponding areas under the receiver operating characteristic curves (AUCs) were compared between the groups. The main outcome measure was OCT thickness measurements.

Participants with MCI/AD showed significantly thinner measured and compensated cpRNFL, mGCC, and altered retinal vessel density (p< 0.05). Compensated RNFL outperformed measured RNFL for discrimination of MCI/AD (AUC = 0.74 vs 0.69; p= 0.026). Combining macular and compensated cpRNFL parameters provided the best detection of MCI/AD (AUC = 0.80 vs 0.69; p< 0.001).

Accounting for interindividual variations of ocular anatomical features in cpRNFL measurements and incorporating macular information may improve the identification of high-risk individuals with early cognitive impairment.
Accounting for interindividual variations of ocular anatomical features in cpRNFL measurements and incorporating macular information may improve the identification of high-risk individuals with early cognitive impairment.
Revision knee arthroplasty presents a number of challenges, including management of bone loss. The goal in managing moderate to large bone defects is fixation that is sufficient enough to allow early weight-bearing. The purpose of this study was to describe the surgical technique and clinical and radiographic outcomes of patients treated with porous tantalum metaphyseal cones in combination with long uncemented diaphyseal-engaging stems to manage tibial bone loss in revision total knee arthroplasty (TKA).

Thirty-six aseptic revision TKAs were performed at our institution between 2016 and 2019 by two senior authors. A single trabecular metal tantalum cone combined with a long (100 or 155mm) press fit, diaphyseal-engaging stem was used in all cases to reconstruct metaphyseal bone defects and to augment tibial fixation. Cemented stems were excluded. The tibiofemoral angle was measured along the tibial and femoral shaft axes on the weight-bearing anteroposterior radiograph at final follow-up (range 15-56monthng all-cause revision as the endpoint.
Hybrid fixation with uncemented diaphyseal-engaging stems and porous tantalum metaphyseal cones resulted in radiographic lack of osteolysis, good clinical outcomes, and survivorship of 91.7% at a median follow-up of 33 months when considering all-cause revision as the endpoint.
Amyotrophic lateral sclerosis (ALS) is characterized by a progressive loss of motor neurons (MNs), leading to paralysis, respiratory failure and death within 2-5years of diagnosis. The exact mechanisms of sporadic ALS, which comprises 90% of all cases, remain unknown. In familial ALS, mutations in superoxide dismutase (SOD1) cause 10% of cases.

ALS patient-derived human-induced pluripotent stem cells (ALS hiPSCs, harboring the SOD1
mutation), were differentiated to MNs (ALS-MNs). The neuroprotective effects of conditioned medium (CM) of hESCs (H9), wt hiPSCs (WTC-11) and the ALS iPSCs, on MN apoptosis and viability, formation and maintenance of neurites, mitochondrial activity and expression of inflammatory genes, were examined. For in vivo studies, 200μl of CM from the ALS iPSCs (CS07 and CS053) was injected subcutaneously into the ALS model mice (transgenic for the human SOD1
mutation). Animal agility and strength, muscle innervation and mass, neurological score, onset of paralysis and lifespan of tly stabilized MN mitochondria and attenuated inflammatory genes. Biochemical characterization, comparative proteomics, and epigenetic screen all suggested that it was the interactome of several key proteins from different fractions of PSC-CM that delivered the multifaceted neuroprotection.

This work introduces and mechanistically characterizes a new biologic for treating ALS and other complex neurodegenerative diseases.
This work introduces and mechanistically characterizes a new biologic for treating ALS and other complex neurodegenerative diseases.
A distal femoral trial component was manufactured, and flexion gap size and inclination were evaluated with or without the distal femoral trial component in total knee arthroplasty (TKA). This study aimed to evaluate the effect of the distal femoral trial component on flexion gap size and joint inclination in posterior-stabilized (PS)-TKA.

A total of 84 patients with medial osteoarthritis who underwent mobile-bearing PS-TKA using modified gap techniques were included in this retrospective study. The flexion gap size and inclination before and after setting the distal femoral trial component were evaluated and compared with the final gap size and inclination.

The joint gap size and inclination were significantly lower in those with than in those without the distal femoral trial component (P = 0.005, P < 0.001). The final gap size and inclination were similar to the gap size and inclination with the distal trial component (P = 0.468, P = 0.158).

The joint gap size and medial tension in PS-TKA were significantly reduced after setting the distal femoral trial component. The flexion gap measured using the distal femoral trial component was similar to that when the final trial component was set. To more accurately perform the gap technique TKA, the flexion gap should be measured using the distal femoral trial component.
The joint gap size and medial tension in PS-TKA were significantly reduced after setting the distal femoral trial component. https://www.selleckchem.com/products/emricasan-idn-6556-pf-03491390.html The flexion gap measured using the distal femoral trial component was similar to that when the final trial component was set. To more accurately perform the gap technique TKA, the flexion gap should be measured using the distal femoral trial component.
Despite accumulating epidemiological studies support that diabetes increases the risk of Alzheimer's disease (AD), the causal associations between diabetes and AD remain inconclusive. The present study aimed to explore i) whether diabetes is causally related to the increased risk of AD; ii) and if so, which diabetes-related physiological parameter is associated with AD; iii) why diabetes drugs can be used as candidates for the treatment of AD. Two-sample Mendelian randomization (2SMR) was employed to perform the analysis.

Firstly, the 2SMR analysis provided a suggestive association between genetically predicted type 1 diabetes (T1D) and a slightly increased AD risk (OR = 1.04, 95% CI = [1.01, 1.06]), and type 2 diabetes (T2D) showed a much stronger association with AD risk (OR = 1.34, 95% CI = [1.05, 1.70]). Secondly, further 2SMR analysis revealed that diabetes-related physiological parameters like fasting blood glucose and total cholesterol levels might have a detrimental role in the development of AD. Thirdly, we obtained 74 antidiabetic drugs and identified SNPs to proxy the targets of antidiabetic drugs. 2SMR analysis indicated the expression of three target genes, ETFDH, GANC, and MGAM, were associated with the increased risk of AD, while CPE could be a protective factor for AD. Besides, further PPI network found that GANC interacted with MGAM, and further interacted with CD33, a strong genetic locus related to AD.

In conclusion, the present study provides evidence of a causal association between diabetes and increased risk of AD, and also useful genetic clues for drug development.
In conclusion, the present study provides evidence of a causal association between diabetes and increased risk of AD, and also useful genetic clues for drug development.

10/12/2024


Breakthrough SARS-CoV-2 infections are more frequent (5.8% (201/3441) vs 3.9% (66/1682), p = 0.0039) in patients treated with infliximab than vedolizumab, and the risk of breakthrough SARS-CoV-2 infection is predicted by peak anti-S RBD antibody concentration after two vaccine doses. Irrespective of the treatments, higher, more sustained antibody levels are observed in patients with a history of SARS-CoV-2 infection prior to vaccination. Our results thus suggest that adapted vaccination schedules may be required to induce immunity in at-risk, anti-TNF-treated patients.Plasmon polaritons in topological insulators attract attention from a fundamental perspective and for potential THz photonic applications. Although polaritons have been observed by THz far-field spectroscopy on topological insulator microstructures, real-space imaging of propagating THz polaritons has been elusive so far. Here, we show spectroscopic THz near-field images of thin Bi2Se3 layers (prototypical topological insulators) revealing polaritons with up to 12 times increased momenta as compared to photons of the same energy and decay times of about 0.48 ps, yet short propagation lengths. From the images we determine and analyze the polariton dispersion, showing that the polaritons can be explained by the coupling of THz radiation to various combinations of Dirac and massive carriers at the Bi2Se3 surfaces, massive bulk carriers and optical phonons. Our work provides critical insights into the nature of THz polaritons in topological insulators and establishes instrumentation and methodology for imaging of THz polaritons.π-Extended tetrasubstituted olefins are widely found motifs in natural products, leading drugs, and agrochemicals. Thus, development of modular strategies for the synthesis of complex all-carbon-substituted olefins always draws attention. The difunctionalization of unsymmetrical alkynes is an attractive approach but it has remained faced with regioselectivity issues. Here we report the discovery of a regio- and stereoselective syn-1,2-dicarbofunctionalization of unsymmetrical internal alkynes. A cationic Pd-catalyzed three-component coupling of aryl diazonium salts, aryl boronic acids (or olefins) and yne-acetates enables access to all-carbon substituted unsymmetrical olefins. The transformation features broad scope with labile functional group tolerance, building broad chemical space of structural diversity (94 molecules). The value of this synthetic method is demonstrated by the direct transformation of natural products and drug candidates containing yne-acetates, to enable highly substituted structurally complex allyl acetate analogues of biologically important compounds. Synthetic versatility of the carboxylate bearing highly substituted olefins is also presented. The reaction outcome is attributed to the in situ formation of stabilized cationic aryl-Pd species, which regulates regioselective aryl-palladation of unsymmetrical yne-acetates. Control experiments reveal the synergy between the carboxylate protecting group and the cationic Pd-intermediate in the regioselectivity and reaction productivity; density functional theory (DFT) studies rationalize the selectivity of the reaction.Depression, anxiety, obesity and substance use are heritable and often co-occur. However, the mechanisms underlying this co-occurrence are not fully understood. We estimated their familial aggregation and co-aggregation as well as heritabilities and genetic correlations to improve etiological understanding. Data came from the multi-generational population-based Lifelines Cohort Study (n = 162,439). Current depression and anxiety were determined using the MINI International Neuropsychiatric Interview. Smoking, alcohol and drug use were assessed by self-report questionnaires. Body mass index (BMI) and obesity were calculated by measured height and weight. Modified Cox proportional hazards models estimated recurrence risk ratios (λR), and restricted maximum likelihood variance decomposition methods estimated heritabilities (h2) and genetic correlations (rG). All analyses were adjusted for age, age2, and sex. Depression, anxiety, obesity and substance use aggregated within families (λR first-degree relative = 1.08-2.74) as well as between spouses (λR = 1.11-6.60). All phenotypes were moderately heritable (from h2depression = 0.25 to h2BMI = 0.53). Depression, anxiety, obesity and smoking showed positive familial co-aggregation. That is, each of these traits confers increased risk on the other ones within families, consistent with the positive genetic correlations between these phenotypes (rG = 0.16-0.94). The exception was obesity, which showed a negative co-aggregation with alcohol and drug use and vice versa, consistent with the negative genetic correlations of BMI with alcohol (rG = -0.14) and soft drug use (rG = -0.10). Patterns of cross-phenotype recurrence risk highlight the co-occurrence among depression, anxiety, obesity and substance use within families. Patterns of genetic overlap between these phenotypes provide clues to uncovering the mechanisms underlying familial co-aggregation.GNE-493 is a novel PI3K/mTOR dual inhibitor with improved metabolic stability, oral bioavailability, and excellent pharmacokinetic parameters. Here GNE-493 potently inhibited viability, proliferation, and migration in different primary and established (LNCaP and PC-3 lines) prostate cancer cells, and provoking apoptosis. GNE-493 blocked Akt-mTOR activation in primary human prostate cancer cells. A constitutively-active mutant Akt1 restored Akt-mTOR activation but only partially ameliorated GNE-493-induced prostate cancer cell death. Moreover, GNE-493 was still cytotoxic in Akt1/2-silenced primary prostate cancer cells. Significant oxidative stress and programmed necrosis cascade activation were detected in GNE-493-treated prostate cancer cells. Moreover, GNE-493 downregulated Sphingosine Kinase 1 (SphK1), causing ceramide accumulation in primary prostate cancer cells. Daily single dose GNE-493 oral administration robustly inhibited the growth of the prostate cancer xenograft in the nude mice. Akt-mTOR inactivation, SphK1 downregulation, ceramide level increase, and oxidative injury were detected in GNE-493-treated prostate cancer xenograft tissues. Together, GNE-493 inhibited prostate cancer cell growth possibly through the Akt-mTOR-dependent and -independent mechanisms.Prior research has demonstrated high levels of cognitive and physical functional impairments in World Trade Center (WTC) responders. A follow-up neuroimaging study identified changes to white matter connectivity within the cerebellum in responders with cognitive impairment (CI). In the first study to examine cerebellar cortical thickness in WTC responders with CI, we fielded a structural magnetic resonance imaging protocol. WTC responders (N = 99) participated in a structural magnetic resonance imaging (MRI) study, of whom 48 had CI. Participants with CI did not differ demographically or by intracranial volume when compared to cognitively unimpaired participants. MRIs were processed using the CERES imaging pipeline; bilateral cortical thickness in 12 cerebellar lobules was reported. Analyses were completed comparing mean cerebellar cortical thickness across groups. Lobules were examined to determine the location and functional correlates of reduced cerebellar cortical thickness. Multivariable-adjusted analyses accounted for the false discovery rate. Mean cerebellar cortical thickness was reduced by 0.17 mm in responders with CI. Decrements in cerebellar cortical thickness were symmetric and located in the Cerebellar Crus (I and II), and in Lobules IV, VI, VIIb, VIIIa, VIIIb, and IX. Cerebellar cortical thickness was associated with episodic memory, response speed, and tandem balance. WTC responders with CI had evidence of reduced cerebellar cortical thickness that was present across lobules in a pattern unique to this cohort.Posttraumatic stress disorder (PTSD) poses an ongoing challenge to society, to health systems, and to the trauma victims themselves. Today PTSD is often considered an incurable chronic problem that lacks effective treatment. While PTSD is closely related to memory, it also affects many physiological systems. PTSD is usually treated with medications and psychotherapy with moderate success, leaving a substantial proportion of patients with enduring distress and disability. Therefore, a search for better treatment options is vital. In this paper, we propose a model in which a conversation-based technique is integrated with bodily manipulation through acupuncture. This approach first emerged in clinical experience showing intriguing results from treating PTSD patients using acupuncture as a main strategy. Its theoretical foundations derive from the clinic and rely on contemporary neuroscience's understanding of memory consolidation and reconsolidation processes. Research shows that acupuncture can have potentially positive effects at three levels (a) achieving a balance between sympathetic and parasympathetic neural activity; (b) reducing activation in the limbic system, hence inducing a calming effect; (c) reshaping the functional connectivity map within important and relevant cortical regions that encompass the default-mode network. We suggest that coupling traumatic memory retrieval leading to reconsolidation, combined with acupuncture, offers considerable potential for positive clinical improvement in patients with PTSD. This may explain the positive results of the described case studies and can pave the path for future advances in research and treatment in this field.The genomic effects of circulating glucocorticoids are particularly relevant in cortico-limbic structures, which express a high concentration of steroid hormone receptors. To date, no studies have investigated genomic differences in hippocampal subregions, namely the dorsal (dHPC) and ventral (vHPC) hippocampus, in preclinical models treated with exogenous glucocorticoids. Chronic oral corticosterone (CORT) in mouse is a pharmacological approach that disrupts the activity of the hypothalamic-pituitary-adrenal axis, increases affective behavior, and induces genomic changes after stress in the HPC of wildtype (WT) mice and mice heterozygous for the gene coding for brain-derived neurotrophic factor Val66Met (hMet), a variant associated with genetic susceptibility to stress. Using RNA-sequencing, we investigated the genomic signatures of oral CORT in the dHPC and vHPC of WT and hMet male and female mice, and examined sex and genotype differences in response to oral CORT. https://www.selleckchem.com/products/valemetostat-ds-3201.html Males under CORT showed lower glycemia andtial methylation of Nr3c1 selectively in hMet females.The goal of spectral imaging is to capture the spectral signature of a target. Traditional scanning method for spectral imaging suffers from large system volume and low image acquisition speed for large scenes. In contrast, computational spectral imaging methods have resorted to computation power for reduced system volume, but still endure long computation time for iterative spectral reconstructions. Recently, deep learning techniques are introduced into computational spectral imaging, witnessing fast reconstruction speed, great reconstruction quality, and the potential to drastically reduce the system volume. In this article, we review state-of-the-art deep-learning-empowered computational spectral imaging methods. They are further divided into amplitude-coded, phase-coded, and wavelength-coded methods, based on different light properties used for encoding. To boost future researches, we've also organized publicly available spectral datasets.

10/12/2024


Imaging mass cytometry (IMC) is among the first tools with the capacity for multiplex analysis of more than 40 targets, which provides a novel approach to biomarker discovery. https://www.selleckchem.com/products/bi-2852.html Here, we used IMC to characterize the tumor microenvironment of patients with metastatic melanoma who received immunotherapy in efforts to find indicative factors of treatment response. In spite of the new power of IMC, the image analysis aspects are still limited by the challenges of cell segmentation.

Here, rather than segment, we performed image analysis using a newly designed version of the AQUA software to measure marker intensity in molecularly defined compartments tumor cells, stroma, T cells, B cells, and macrophages. IMC data were compared with quantitative immunofluorescence (QIF) and digital spatial profiling.

Validation of IMC results for immune markers was confirmed by regression with additional multiplexing methods and outcome assessment. Multivariable analyses by each compartment revealed significant associations oficative biomarkers for immunotherapy in metastatic melanoma, including B2M.
The World Trade Center (WTC) attack of September 11, 2001 created an unprecedented environmental exposure to known and suspected carcinogens. High incidence of multiple myeloma and precursor conditions has been reported among first responders to the WTC disaster. To expand on our prior screening studies, and to characterize the genomic impact of the exposure to known and potential carcinogens in the WTC debris, we were motivated to perform whole-genome sequencing (WGS) of WTC first responders and recovery workers who developed a plasma cell disorder after the attack.

We performed WGS of nine CD138-positive bone marrow mononuclear samples from patients who were diagnosed with plasma cell disorders after the WTC disaster.

No significant differences were observed in comparing the post-WTC driver and mutational signature landscapes with 110 previously published WGSs from 56 patients with multiple myeloma and the CoMMpass WGS cohort (
= 752). Leveraging constant activity of the single-base substitution mutational signatures 1 and 5 over time, we estimated that tumor-initiating chromosomal gains were windowed to both pre- and post-WTC exposure.

Although limitations in sample size preclude any definitive conclusions, our findings suggest that the observed increased incidence of plasma cell neoplasms in this population is due to complex and heterogeneous effects of the WTC exposure that may have initiated or contributed to progression of malignancy.
Although limitations in sample size preclude any definitive conclusions, our findings suggest that the observed increased incidence of plasma cell neoplasms in this population is due to complex and heterogeneous effects of the WTC exposure that may have initiated or contributed to progression of malignancy.
Immune checkpoint inhibition (ICI) alone is not active in mismatch repair-proficient (MMR-P) metastatic colorectal cancer (mCRC), nor does radiotherapy alone result in objective systemic benefit. However, combined radiotherapy plus ICI can induce systemic antitumor immunity in preclinical and clinical models.

In this single-center, phase II study, patients with chemotherapy-refractory MMR-P mCRC received durvalumab 1,500 mg plus tremelimumab 75 mg every 4 weeks plus radiotherapy. The primary endpoint was objective response rate (ORR) in nonirradiated lesions. Treatment and efficacy were correlated with peripheral immune cell profiles.

We enrolled 24 patients, and report outcomes after a median follow-up of 21.8 (range 15.9-26.3) months. link2 The ORR was 8.3% (2 patients) [95% confidence interval (CI), 1.0-27.0]. The median progression-free survival was 1.8 (95% CI, 1.7-1.9) months, median overall survival was 11.4 (95% CI, 10.1-17.4) months. Twenty five percent of patients (
= 6) had treatment-related gradis feasible in MMR-P mCRC with a manageable safety profile. Further studies of novel immunotherapy combinations, and identification of biomarkers predictive of abscopal response are warranted.
Metastatic castration-resistant prostate cancer (mCRPC) remains a disease with high unmet medical need, as most patients do not achieve durable response with available treatments. Prostate-specific membrane antigen (PSMA) is a compelling target for mCRPC. It is highly expressed by primary and metastatic prostate cancer cells, with increased expression after progression on androgen deprivation therapy.

We developed AMG 160, a half-life extended, bispecific T-cell engager immuno-oncology therapy that binds PSMA on prostate cancer cells and cluster of differentiation 3 on T cells for treatment of mCRPC. AMG 160 was evaluated
and in mCRPC xenograft models. AMG 160 tolerability was assessed in nonhuman primates (NHP). AMG 160 activity as monotherapy and in combination with a PSMA-imaging agent, novel hormonal therapy, and immune checkpoint blockade was evaluated.

AMG 160 induces potent, specific killing of PSMA-expressing prostate cancer cell lines
, with half-maximal lysis of 6-42 pmol/L.
, AMG 160 administered weekly at 0.2 mg/kg engages T cells administered systemically and promotes regression of established 22Rv-1 mCRPC xenograft tumors. AMG 160 is compatible with the imaging agent gallium 68-labeled PSMA-11, and shows enhanced cytotoxic activity when combined with enzalutamide or an anti-programmed death-1 antibody. AMG 160 exhibits an extended half-life and has an acceptable safety profile in NHPs.

The preclinical characterization of AMG 160 highlights its potent antitumor activity
and
, and its potential for use with known diagnostic or therapeutic agents in mCRPC. These data support the ongoing clinical evaluation of AMG 160 in patients with mCRPC.
.
The preclinical characterization of AMG 160 highlights its potent antitumor activity in vitro and in vivo, and its potential for use with known diagnostic or therapeutic agents in mCRPC. These data support the ongoing clinical evaluation of AMG 160 in patients with mCRPC.See related commentary by Kamat et al., p. link3 2675.
The CROSS trial established neoadjuvant chemoradiotherapy (nCRT) for patients with resectable esophageal adenocarcinoma (rEAC). In the PERFECT trial, we investigated the feasibility and efficacy of nCRT combined with programmed-death ligand-1 (PD-L1) inhibition for rEAC.

Patients with rEAC received nCRT according to the CROSS regimen combined with five cycles of atezolizumab (1,200 mg). The primary endpoint was the feasibility of administering five cycles of atezolizumab in ≥75% patients. A propensity score-matched nCRT cohort was used to compare pathologic response, overall survival, and progression-free survival. Exploratory biomarker analysis was performed on repeated tumor biopsies.

We enrolled 40 patients of whom 85% received all cycles of atezolizumab. Immune-related adverse events of any grade were observed in 6 patients. In total, 83% proceeded to surgery. Reasons for not undergoing surgery were progression (
= 4), patient choice (
= 2), and death (
= 1). The pathologic complete response rate was 25% (10/40). No statistically significant difference in response or survival was found between the PERFECT and the nCRT cohort. Baseline expression of an established IFNγ signature was higher in responders compared with nonresponders (
= 0.043). On-treatment nonresponders showed either a high number of cytotoxic lymphocytes (CTL) with a transcriptional signature consistent with expression of immune checkpoints, or a low number of CTLs.

Combining nCRT with atezolizumab is feasible in patients with rEAC. On the basis of our exploratory biomarker study, future studies are necessary to elucidate the potential of neoadjuvant immunotherapy in patient subgroups.
.
Combining nCRT with atezolizumab is feasible in patients with rEAC. On the basis of our exploratory biomarker study, future studies are necessary to elucidate the potential of neoadjuvant immunotherapy in patient subgroups.See related commentary by Catenacci, p. 3269.
Actionable mutations can guide genotype-directed matched therapy. We evaluated the utility of tissue-based and plasma-based genotyping for the identification of actionable mutations and selection of matched therapy in patients with metastatic breast cancer (MBC).

Patients with MBC who underwent tissue genotyping (institutional platform, 91-gene assay) or plasma-based cell-free DNA (cfDNA, Guardant360, 73-gene assay) between January 2016 and December 2017 were included. A chart review of records to identify subtype, demographics, treatment, outcomes, and tissue genotyping or cfDNA results was performed. The incidence of actionable mutations and the selection of matched therapy in tissue genotyping or cfDNA cohorts was determined. The impact of matched therapy status on overall survival (OS) in tissue genotyping or cfDNA subgroups was determined with Cox regression analysis.

Of 252 patients who underwent cfDNA testing, 232 (92%) had detectable mutations, 196 (78%) had actionable mutations, and 86 (34%) received matched therapy. Of 118 patients who underwent tissue genotyping, 90 (76%) had detectable mutations, 59 (50%) had actionable mutations, and 13 (11%) received matched therapy. For cfDNA patients with actionable mutations, matched versus nonmatched therapy was associated with better OS [HR 0.41, 95% confidence interval (CI) 0.23-0.73,
= 0.002], and this remained significant in a multivariable analysis correcting for age, subtype, visceral metastases, and brain metastases (HR = 0.46, 95% CI 0.26-0.83,
= 0.010).

Plasma-based genotyping identified high rates of actionable mutations, which was associated with significant application of matched therapy and better OS in patients with MBC.
.
Plasma-based genotyping identified high rates of actionable mutations, which was associated with significant application of matched therapy and better OS in patients with MBC.See related commentary by Rugo and Huppert, p. 3275.
Recent evidence has shown adverse oncological outcomes when minimally invasive surgery is used in early-stage cervical cancer. The objective of this study was to compare disease-free survival in patients that had undergone radical hysterectomy and pelvic lymphadenectomy, either by laparoscopy or laparotomy.

We performed a multicenter, retrospective cohort study of patients with cervical cancer stage IA1 with lymph-vascular invasion, IA2, and IB1 (FIGO 2009 classification), between January 1, 2006 to December 31, 2017, at seven cancer centers from six countries. We included squamous, adenocarcinoma, and adenosquamous histologies. We used an inverse probability of treatment weighting based on propensity score to construct a weighted cohort of women, including predictor variables selected a priori with the possibility of confounding the relationship between the surgical approach and survival. We estimated the HR for all-cause mortality after radical hysterectomy with weighted Cox proportional hazard models.
laparoscopy was associated with worse disease-free survival, compared to laparotomy.
In this retrospective multicenter study, laparoscopy was associated with worse disease-free survival, compared to laparotomy.

10/11/2024


Objective Pulmonary hypertension (PH) is a rare maternal cardiac disorder associated with high maternal and fetal mortality. The objective of our study was to evaluate the maternal and fetal outcomes in pregnant women with PH in a single health center.Study design 45 pregnant patients with PH, who had undergone antenatal follow-up and delivery at the department of gynecology and obstetrics at a referral center were retrospectively investigated. Maternal and perinatal outcomes were evaluated and descriptive statistics were reported.Results According to the WHO classification; 35 patients (78%) were in Group 1; 9 patients (20%) in Group 2 and one patient (2%) were in Group 3. Thirty-three of the cases (73%) had mild, 8 (18%) moderate and 4 (9%) severe PH. The mean delivery week was 35.5. Twenty-four of the cases (56%) delivered before the 37th week and the remaining 19 cases (44%) in the 37th week or later. Rate of cesarean section delivery was 88%. Only one case of maternal death was reported, who was initially diagnosed with PAH during pregnancy. This patient had severe PH and was in Group 1 according to the WHO classification.Conclusion While the mortality rates related to PH were reported to be between 30% and 56% several decades ago, recent studies have reported the mortality rates between 5% and 25%. It is believed that the decline in the maternal mortality depended on the developments in the treatment alternatives and multidisciplinary management. However, PH is still a serious condition which requires a multidisciplinary approach and a well-planned obstetric management.Sodium bicarbonate, commonly known as baking soda, is widely used in the clinic as an antacid for treating gastric hyperacidity, among other conditions. Chao et al have reported a clinical trial about targeting intratumor lactic acidosis-transarterial chemoembolization. Based on conventional transarterial chemoembolization, the authors added a 5% sodium bicarbonate solution to cytotoxic drugs, resulting in a high local control rate. The explanation for the antitumor effects of sodium bicarbonate is related to acidosis in the tumor microenvironment. https://www.selleckchem.com/products/ipi-549.html In this review, we summarize the findings from studies administering sodium bicarbonate alone or in combination with other anticancer therapies as cancer treatments, and discuss methods for safe and effective use of sodium bicarbonate in the clinic.Introduction Hepatitis B virus (HBV) reactivation can be induced by treatments that attenuate the immunological control over HBV, leading to increased morbidity and mortality. The risk of HBV reactivation is determined by host immunity, viral factors, and the type and dose of treatments. Nevertheless, the risk of HBV reactivation for a growing number of novel therapies remains uncertain and needs to be carefully examined. Identification of patients at risk and administration of prophylactic antiviral agents are critical to prevent HBV reactivation. Early diagnosis and initiation of antiviral treatment are the keys to avoid devastating outcomes. Area covered We summarized the latest evidence and recommendations for risk stratification, early diagnosis, prophylaxis, and management of HBV reactivation. Expert opinion Universal screening, adequate prophylaxis, and close monitoring are essential for the prevention of HBV reactivation. Risk stratification of patients at risk with appropriate antiviral prophylaxis can prevent HBV reactivation effectively. Several emerging biomarkers have been proved to help determine the risk precisely. Early detection and timely administration of antiviral agents are crucial for management. Further studies on the precision of risk stratification as well as the optimal duration of prophylaxis and treatment are needed to establish an individualized strategy.Objective The lungs are uniquely exposed to the external environment. Sand and dust exposures in desert regions are common among deployed soldiers. A significant number of Veterans deployed to the Middle East report development of respiratory disorders and diseases.Materials and methods Sand collected from Fallujah, Iraq and Kandahar, Afghanistan combat zones was analyzed and compared to a sand sample collected from an historic United States (U.S.) battle region (Fort Johnson, James Island, SC, Civil War battle site). Sand samples were analyzed to determine the physical and elemental characteristics that may have the potential to contribute to development of respiratory disease.Results Using complementary scanning electron microscopy (SEM) imaging and analysis, and inductively coupled plasma mass spectrometry (ICP-MS), it was determined that Iraq sand contained elevated levels of calcium and first row transition metals versus Afghanistan and U.S. sand. Iraq sand particle texture was smooth and round, and particles were considerably smaller than Afghanistan sand. Afghanistan sand was elevated in rare earth metals versus Iraq or U.S. sands and had sharp edge features and larger particle size than Iraq sand.Conclusions These data demonstrate significant differences in Iraq and Afghanistan sand particle size and characteristics. Middle East sands contained elevated levels of elements that have been associated with respiratory disease versus control site sand, suggesting the potential of sand/dust storm exposure to promote adverse respiratory symptoms. Data also demonstrate the potential for variation based on geographical region or site of exposure. The data generated provide baseline information that will be valuable in designing future exposure studies.Background Studies have revealed the increased incidence of health disorders in First Responders (FR) who were at Ground Zero over the initial 72 hr after the World Trade Center (WTC) collapses. Previous studies in rats exposed to WTC dusts using exposure scenarios that mimicked FR mouthbreathing showed exposure led to altered expression of genes whose products could be involved in lung ailments. Nevertheless, it was uncertain if repeated exposures (as occurred in earliest days post-disaster) might have given rise to long-term changes in the lungs/other organs, in white blood cell (WBC) profiles, and/or systemic expression of select (mostly immune-related) proteins.Methods To examine this, rats were exposed on 2 consecutive days (2 hr/d, intratracheal inhalation) to WTC dusts and then examined over a 1-yr period thereafter. At select times post-exposure, organ (lung, heart, liver, kidney, spleen) weights, WBC profiles, and blood levels of a variety of proteins were evaluated.Results The study showed that over the 1-yr period, there were nominal effects on organ weights (absolute, index) as a result of the dust exposures.

10/08/2024


TyrCreER+,BrafCA/+,Ptenlox/lox genetically engineered mice (Braf/Pten mice) are widely used as an in vivo model of metastatic melanoma. Once a primary tumor has been induced by tamoxifen treatment, an increase in metastatic burden is observed within 4-6 weeks after induction. This paper shows how Ultra-High-Frequency UltraSound (UHFUS) imaging can be exploited to monitor the increase in metastatic involvement of the inguinal lymph nodes by measuring the increase in their volume. The UHFUS system is used to scan anesthetized mice with a UHFUS linear probe (22-55 MHz, axial resolution 40 µm). B-mode images from the inguinal lymph nodes (both left and right sides) are acquired in a short-axis view, positioning the animals in dorsal recumbency. Ultrasound records are acquired using a 44 µm step size on a motorized mechanical arm. Afterward, two-dimensional (2D) B-mode acquisitions are imported into the software platform for ultrasound image post-processing, and inguinal lymph nodes are identified and segmented semi-automatically in the acquired cross-sectional 2D images. Finally, a total reconstruction of the three-dimensional (3D) volume is automatically obtained along with the rendering of the lymph node volume, which is also expressed as an absolute measurement. This non-invasive in vivo technique is very well tolerated and allows the scheduling of multiple imaging sessions on the same experimental animal over 2 weeks. It is, therefore, ideal to assess the impact of pharmacological treatment on metastatic disease.The dynamics between coupled brains of individuals have been increasingly represented by inter-brain synchronization (IBS) when they coordinate with each other, mostly using simultaneous-recording signals of brains (namely hyperscanning) with fNIRS. In fNIRS hyperscanning studies, IBS has been commonly assessed through the wavelet transform coherence (WTC) method because of its advantage on expanding time series into time-frequency space where oscillations can be seen in a highly intuitive way. The observed IBS can be further validated via the permutation-based random pairing of the trial, partner, and condition. Here, a protocol is presented to describe how to obtain brain signals via fNIRS technology, calculate IBS through the WTC method, and validate IBS by permutation in a hyperscanning study. Further, we discuss the critical issues when using the above methods, including the choice of fNIRS signals, methods of data preprocessing, and optional parameters of computations. In summary, using the WTC method and permutation is a potentially standard pipeline for analyzing IBS in fNIRS hyperscanning studies, contributing to both the reproducibility and reliability of IBS.Glial cells probably have a considerable implication in the pathophysiology of neurodegenerative disorders, such as Alzheimer's disease (AD). Their alterations are perhaps associated with a pro-inflammatory state. The TgF344-AD rat strain has been designed to express human APP and human PS1ΔE9 genes, encoding for amyloid proteins Aβ-40 and Aβ-42 and displays amyloid pathology and cognitive deficits with aging. The TgF344-AD rat model is used in this study to evaluate the cellular origin of the 18 kDa translocator protein (TSPO, a marker of glial cell activation) binding, and the 5HT2A-receptor (5HT2AR) serotonin receptor levels that are possibly disrupted in AD. The technique presented here is Fluorescence-Activated Cell Sorting to Radioligand Treated Tissue (FACS-RTT), a quantitative cell-type-specific technique complementary to in vivo PET or SPECT or ex vivo/in vitro autoradiography techniques. It quantifies the same radiolabeled tracer used prior for imaging, using a γ counter after cytometry cell sorting. This allows determining the cellular origin of the radiolabeled protein with high cellular specificity and sensitivity. For example, studies with FACS-RTT showed that (i) the increase in TSPO binding was associated with microglia in a rat model of lipopolysaccharide (LPS)-induced neuroinflammation, (ii) an increase in TSPO binding at 12- and 18-months was associated with astrocytes first, and then microglia in the TgF344-AD rats compared to wild type (WT) rats, and (iii) the striatal density of 5HT2AR decreases in astrocytes at 18 months in the same rat AD model. Interestingly, this technique can be extended to virtually all radiotracers.Differentiation and maturation of megakaryocytes occur in close association with the cellular and extracellular components of the bone marrow. These processes are characterized by the gradual appearance of essential structures in the megakaryocyte cytoplasm such as a polyploid and polylobulated nucleus, an internal membrane network called demarcation membrane system (DMS) and the dense and alpha granules that will be found in circulating platelets. In this article, we describe a standardized protocol for the in situ ultrastructural study of murine megakaryocytes using transmission electron microscopy (TEM), allowing for the identification of key characteristics defining their maturation stage and cellular density in the bone marrow. Bone marrows are flushed, fixed, dehydrated in ethanol, embedded in plastic resin, and mounted for generating cross-sections. Semi-thin and thin sections are prepared for histological and TEM observations, respectively. This method can be used for any bone marrow cell, in any EM facility and has the advantage of using small sample sizes allowing for the combination of several imaging approaches on the same mouse.The fusion genes resulting from chromosomal translocation have been found in many solid tumors or leukemia. EWS-FLI1, which belongs to the FUS/EWS/TAF15 (FET) family of fusion oncoproteins, is one of the most frequently involved fusion genes in Ewing sarcoma. These FET family fusion proteins typically harbor a low-complexity domain (LCD) of FET protein at their N-terminus and a DNA-binding domain (DBD) at their C-terminus. EWS-FLI1 has been confirmed to form biomolecular condensates at its target binding loci due to LCD-LCD and LCD-DBD interactions, and these condensates can recruit RNA polymerase II to enhance gene transcription. However, how these condensates are assembled at their binding sites remains unclear. Recently, a single-molecule biophysics method-DNA Curtains-was applied to visualize these assembling processes of EWS-FLI1 condensates. Here, the detailed experimental protocol and data analysis approaches are discussed for the application of DNA Curtains in studying the biomolecular condensates assembling on target DNA.Whole-cell cryo-electron tomography (cryo-ET) is a powerful technology that is used to produce nanometer-level resolution structures of macromolecules present in the cellular context and preserved in a near-native frozen-hydrated state. However, there are challenges associated with culturing and/or adhering cells onto TEM grids in a manner that is suitable for tomography while retaining the cells in their physiological state. Here, a detailed step-by-step protocol is presented on the use of micropatterning to direct and promote eukaryotic cell growth on TEM grids. During micropatterning, cell growth is directed by depositing extra-cellular matrix (ECM) proteins within specified patterns and positions on the foil of the TEM grid while the other areas remain coated with an anti-fouling layer. Flexibility in the choice of surface coating and pattern design makes micropatterning broadly applicable for a wide range of cell types. Micropatterning is useful for studies of structures within individual cells as well as more complex experimental systems such as host-pathogen interactions or differentiated multi-cellular communities. Micropatterning may also be integrated into many downstream whole-cell cryo-ET workflows, including correlative light and electron microscopy (cryo-CLEM) and focused-ion beam milling (cryo-FIB).Neuromuscular junctions (NMJs) are specialized synapses between the axon of the lower motor neuron and the muscle facilitating the engagement of muscle contraction. In motor neuron disorders, such as amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA), NMJs degenerate, resulting in muscle atrophy and progressive paralysis. The underlying mechanism of NMJ degeneration is unknown, largely due to the lack of translatable research models. This study aimed to create a versatile and reproducible in vitro model of a human motor unit with functional NMJs. Therefore, human induced pluripotent stem cell (hiPSC)-derived motor neurons and human primary mesoangioblast (MAB)-derived myotubes were co-cultured in commercially available microfluidic devices. The use of fluidically isolated micro-compartments allows for the maintenance of cell-specific microenvironments while permitting cell-to-cell contact through microgrooves. By applying a chemotactic and volumetric gradient, the growth of motor neuron-neurites through the microgrooves promoting myotube interaction and the formation of NMJs were stimulated. These NMJs were identified immunocytochemically through co-localization of motor neuron presynaptic marker synaptophysin (SYP) and postsynaptic acetylcholine receptor (AChR) marker α-bungarotoxin (Btx) on myotubes and characterized morphologically using scanning electron microscopy (SEM). The functionality of the NMJs was confirmed by measuring calcium responses in myotubes upon depolarization of the motor neurons. The motor unit generated using standard microfluidic devices and stem cell technology can aid future research focusing on NMJs in health and disease.The nuclear pore complex (NPC) is a complex macromolecular structure comprised of multiple copies of ~30 different nucleoporin proteins (Nups). Collectively, these Nups function to regulate genome organization, gene expression, and nucleocytoplasmic transport (NCT). Recently, defects in NCT and alterations to specific Nups have been identified as early and prominent pathologies in multiple neurodegenerative diseases, including Amyotrophic Lateral Sclerosis (ALS), Alzheimer's Disease (AD)/Frontotemporal Dementia (FTD), and Huntington's Disease (HD). Advances in both light and electron microscopy allow for a thorough examination of sub-cellular structures, including the NPC and its Nup constituents, with increased precision and resolution. https://www.selleckchem.com/products/CX-3543.html Of the commonly used techniques, super-resolution structured illumination microscopy (SIM) affords the unparalleled opportunity to study the localization and expression of individual Nups using conventional antibody-based labeling strategies. Isolation of nuclei prior to SIM enables the visualization of individual Nup proteins within the NPC and nucleoplasm in fully and accurately reconstructed 3D space. This protocol describes a procedure for nuclei isolation and SIM to evaluate Nup expression and distribution in human iPSC-derived CNS cells and postmortem tissues.In clinical in vitro fertilization (IVF), the prevailing method for PGT-A requires biopsy of a few cells from the trophectoderm (TE). This is the lineage that forms the placenta. This method, however, requires specialized skills, is invasive, and suffers from false positives and negatives because the chromosome numbers in the TE and the inner cell mass (ICM), which develops into the fetus, are not always the same. NICS, a technology requiring sequencing of DNA that released into the culture medium from both TE and ICM, may offer a way out to these problems but has previously been shown to have limited efficacy. The present study reports the full protocol of NICS, which includes culture medium sampling methods, whole genome amplification (WGA) and library preparation, and NGS data analysis by analysis software. Considering the different cryopreservation times in different embryo laboratories, embryologists have two methods for collecting embryo culture medium that can be selected according to the actual conditions of the IVF laboratory.