The symposium provided a comprehensive scientific and practical primer as well as an update for all those with an interest in maternal and neonatal infection, immunity, and vaccination. The summary presented here provides an update of the current status of progress in maternal and neonatal immunization.Melinda A. Brindley works in the field of virology with specific interests in understanding how viruses enter cells. In this mSphere of Influence article, she reflects on how the paper "Vaccinia virus uses macropinocytosis and apoptotic mimicry to enter host cells" by J. Mercer and A. Helenius (Science 320531-535, 2008, https//doi.org/10.1126/science.1155164) made an impact on her by expanding our understanding of virus-host interactions and virus-cell binding.Many cyanobacteria produce extracellular polymeric substances (EPS), composed mainly of heteropolysaccharides, that play a variety of physiological roles, being crucial for cell protection, motility, and biofilm formation. However, due to their complexity, the EPS biosynthetic pathways as well as their assembly and export mechanisms are still far from being fully understood. Here, we show that the absence of a putative EPS-related protein, KpsM (Slr0977), has a pleiotropic effect on Synechocystis sp. strain PCC 6803 physiology, with a strong impact on the export of EPS and carbon fluxes. The kpsM mutant exhibits a significant reduction of released polysaccharides and a smaller decrease of capsular polysaccharides, but it accumulates more polyhydroxybutyrate (PHB) than the wild type. In addition, this strain shows a light/cell density-dependent clumping phenotype and exhibits an altered protein secretion capacity. https://www.selleckchem.com/products/lurbinectedin.html Furthermore, the most important structural component of pili, the protein PilA, was found to havely redirect carbon flux toward the production of other compounds, allowing the implementation of industrial systems based on cyanobacterial cell factories. Here, we show that a Synechocystis kpsM (slr0977) mutant secretes less EPS than the wild type, accumulating more carbon intracellularly, as polyhydroxybutyrate. Further characterization showed a light/cell density-dependent clumping phenotype, altered protein secretion, and modified glycosylation of PilA. The proteome and transcriptome of the mutant revealed significant changes, namely, in photosynthesis and carbon metabolism. Altogether, this work provides a comprehensive overview of the impact of kpsM disruption on Synechocystis physiology, highlighting the importance of EPS as a carbon sink and showing how cells adapt when their secretion is impaired, and the redirection of the carbon fluxes.The complement system is an evolutionarily ancient defense mechanism against foreign substances. Consisting of three proteolytic activation pathways, complement converges on a common effector cascade terminating in the formation of a lytic pore on the target surface. The classical and lectin pathways are initiated by pattern recognition molecules binding to specific ligands, while the alternative pathway is constitutively active at low levels in circulation. Complement-mediated killing is essential for defense against many Gram-negative bacterial pathogens, and genetic deficiencies in complement can render individuals highly susceptible to infection, for example, invasive meningococcal disease. In contrast, Gram-positive bacteria are inherently resistant to the direct bactericidal activity of complement due to their thick layer of cell wall peptidoglycan. However, complement also serves diverse roles in immune defense against all bacteria by flagging them for opsonization and killing by professional phagocytes, synergizing with neutrophils, modulating inflammatory responses, regulating T cell development, and cross talk with coagulation cascades. In this review, we discuss newly appreciated roles for complement beyond direct membrane lysis, incorporate nonlytic roles of complement into immunological paradigms of host-pathogen interactions, and identify bacterial strategies for complement evasion.Extensive use of chemical insecticides adversely affects both environment and human health. One of the most popular biological pest control alternatives is bioinsecticides based on Bacillus thuringiensis This entomopathogenic bacterium produces different protein types which are toxic to several insect, mite, and nematode species. Currently, insecticidal proteins belonging to the Cry and Vip3 groups are widely used to control insect pests both in formulated sprays and in transgenic crops. However, the benefits of B. thuringiensis-based products are threatened by insect resistance evolution. Numerous studies have highlighted that mutations in genes coding for surrogate receptors are responsible for conferring resistance to B. thuringiensis Nevertheless, other mechanisms may also contribute to the reduction of the effectiveness of B. thuringiensis-based products for managing insect pests and even to the acquisition of resistance. Here, we review the relevant literature reporting how invertebrates (mainly insects and Caenorhabditis elegans) respond to exposure to B. thuringiensis as either whole bacteria, spores, and/or its pesticidal proteins.Stem cell senescence increases alongside the progressive functional declines that characterize aging. The effects of extracellular vesicles (EVs) are now attracting intense interest in the context of aging and age-related diseases. Here, we demonstrate that neonatal umbilical cord (UC) is a source of EVs derived from mesenchymal stem cells (MSC-EVs). These UC-produced MSC-EVs (UC-EVs) contain abundant anti-aging signals and rejuvenate senescing adult bone marrow-derived MSCs (AB-MSCs). UC-EV-rejuvenated AB-MSCs exhibited alleviated aging phenotypes and increased self-renewal capacity and telomere length. Mechanistically, UC-EVs rejuvenate AB-MSCs at least partially by transferring proliferating cell nuclear antigen (PCNA) into recipient AB-MSCs. When tested in therapeutic context, UC-EV-triggered rejuvenation enhanced the regenerative capacities of AB-MSCs in bone formation, wound healing, and angiogenesis. Intravenously injected UC-EVs conferred anti-aging phenotypes including decreased bone and kidney degeneration in aged mice.