People

Sorry, no results were found.

Circles

Sorry, no results were found.

Posts

59 mins ago


Most of our knowledge is limited to their cholesterol-lowering influence and protective effect against cardiovascular disease. However, the world of plant sterols is significantly wider if we consider the thousands of publications released over the past 10 years.In this work, the use of a calibration satellite (L2-CalSat) flying in formation with a Cosmic Microwave Background (CMB) polarization mission in an orbit located at the second Lagrange point, is proposed. The new generation of CMB telescopes are expected to reach unprecedented levels of sensitivity to allow a very precise measurement of the B-mode of polarization, the curl-like polarization component expected from gravitational waves coming from Starobinski inflationary models. Due to the CMB polarized signal weakness, the instruments must be subjected to very precise calibration processes before and after launching. Celestial sources are often used as external references for calibration after launch, but these sources are not perfectly characterized. As a baseline option, L2-CalSat is based on the CubeSat standard and serves as a perfectly known source of a reference signal to reduce polarization measurements uncertainty. A preliminary design of L2-CalSat is described and, according to the scanning strategy followed by the telescope, the influence of the relative position between the spacecrafts in the calibration process is studied. This new calibration element will have a huge impact on the performance of CMB space missions, providing a significant improvement in the measurements accuracy without requiring new and costly technological developments.The detection of cancer biomarkers in the early stages could prevent cancer-related deaths significantly. Nanomaterials combined with biomolecules are extensively used in drug delivery, imaging, and sensing applications by targeting the overexpressed cancer proteins such as folate receptors (FRs) to control the disease by providing earlier treatments. In this investigation, biocompatible reduced graphene oxide (rGO) nanosheets combined with folic acid (FA)-a vitamin with high bioaffinity to FRs-is utilized to develop an electrochemical sensor for cancer detection. To mimic the cancer cell environment, FR-β protein is used to evaluate the response of the rGO-FA sensor. The formation of the rGO-FA nanocomposite was confirmed through various characterization techniques. A glassy carbon (GC) electrode was then modified with the obtained rGO-FA and analyzed via differential pulse voltammetry (DPV) for its specific detection towards FRs. Using the DPV technique, the rGO-FA-modified electrode exhibited a limit of detection (LOD) of 1.69 pM, determined in a linear concentration range from 6 to 100 pM. This excellent electrochemical performance towards FRs detection could provide a significant contribution towards future cancer diagnosis. Moreover, the rGO-FA sensing platform also showed excellent specificity and reliability when tested against similar interfering biomolecules. This rGO-FA sensor offers a great promise to the future medical industry through its highly sensitive detection towards FRs in a fast, reliable, and economical way.Identification of the protein targets of hit molecules is essential in the drug discovery process. Target prediction with machine learning algorithms can help accelerate this search, limiting the number of required experiments. However, Drug-Target Interactions databases used for training present high statistical bias, leading to a high number of false positives, thus increasing time and cost of experimental validation campaigns. To minimize the number of false positives among predicted targets, we propose a new scheme for choosing negative examples, so that each protein and each drug appears an equal number of times in positive and negative examples. We artificially reproduce the process of target identification for three specific drugs, and more globally for 200 approved drugs. For the detailed three drug examples, and for the larger set of 200 drugs, training with the proposed scheme for the choice of negative examples improved target prediction results the average number of false positives among the top ranked predicted targets decreased, and overall, the rank of the true targets was improved.Our method corrects databases' statistical bias and reduces the number of false positive predictions, and therefore the number of useless experiments potentially undertaken.Zijuan tea (Camellia sinensis var. assamica cv. Zijuan) is a unique purple tea. Recently, purple tea has drawn much attention for its special flavor and health benefits. However, the characteristic compounds of purple tea compared with green tea have not been reported yet. The present study employed a non-targeted metabolomics approach based on ultra-high performance liquid chromatography (UHPLC)-Orbitrap-tandem mass spectrometry (MS/MS) for comprehensive analysis of characteristic metabolites between Zijuan purple tea (ZJT) and Yunkang green tea (YKT). Partial least squares-discriminant analysis (PLS-DA) indicated that there are significant differences in chemical profiles between ZJT and YKT. https://www.selleckchem.com/ALK.html A total of 66 major differential metabolites included catechins, proanthocyanins, flavonol and flavone glycosides, phenolic acids, amino acids and alkaloids were identified in ZJT. Among them, anthocyanins are the most characteristic metabolites. Nine glycosides of anthocyanins and six glycosides of proanthocyanins were found to be significantly higher in ZJT than that in YKT. Subsequently, pathway analysis revealed that ZJT might generate anthocyanins and proanthocyanins through the flavonol and flavone glycosides. Furthermore, quantitative analysis showed absolutely higher concentrations of total anthocyanins in ZJT, which correlated with the metabolomics results. This study presented the comprehensive chemical profiling and the characterized metabolites of ZJT. These results also provided chemical evidence for potential health functions of ZJT.
In support of claims that their products have antioxidant properties, the food industry and dietary supplement manufacturers rely solely on the in vitro determination of the ORAC (oxygen radical antioxidant capacity) value, despite its acknowledged lack of any in vivo relevance. It thus appears necessary to use tests exploiting biological materials (blood, white blood cells) capable of producing physiological free radicals, in order to evaluate more adequately the antioxidant capacities of foods such as fruit and vegetable juices.

Two approaches to assessing the antioxidant capacities of 21 commercial fruit and vegetable juices were compared the ORAC assay and the "PMA-whole blood assay," which uses whole blood stimulated by phorbol myristate acetate to produce the superoxide anion. We described in another paper the total polyphenol contents (TPCs) and individual phenolic compound contents of all the juices were investigated.

Ranking of the juices from highest to lowest antioxidant capacity differed considerably according to the test used, so there was no correlation (
= 0.

1 hr ago


Although stroke is an uncommon complication of COVID-19, when present, it often results in significant morbidity and mortality. In COVID-19 patients, stroke was associated with older age, comorbidities, and severe illness.
Although stroke is an uncommon complication of COVID-19, when present, it often results in significant morbidity and mortality. In COVID-19 patients, stroke was associated with older age, comorbidities, and severe illness.
Accumulating evidences have demonstrated the roles of several long non-coding RNAs (lncRNAs) in depression. We aim to examine the capabilities of lncRNA growth arrest-specific transcript 5 (GAS5) on mice with depression-like behaviors and the mechanism of action.

Fifty-six healthy mice were selected for model establishment. Morris water maze test and trapeze test were performed for evaluating learning and memory ability. The binding relationship between lncRNA GAS5 and microRNA-26a (miR-26a) and the target relationship between miR-26a and EGR1 were verified by dual-luciferase reporter gene assay. The apoptosis of neurons in the hippocampal CA1 region of mice was detected by TUNEL staining. The expression of inflammatory factors, lncRNA GAS5, miR-26a, early growth response gene 1 (EGR1), phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) pathway- and apoptosis-related factors in hippocampal tissues was tested by RT-qPCR and western blot analysis.

miR-26a expression was down-regulated while EGR1 and lncRNA GAS5 expression were up-regulated in hippocampal tissues of mice with depression-like behaviors. LncRNA GAS5 specifically bound to miR-26a and miR-26a targeted EGR1. Silencing of lncRNA GAS5 curtailed the release of inflammatory factors and the apoptosis of hippocampal neuron of mice with depression-like behaviors. EGR1 suppressed PI3K/AKT pathway activation to promote the release of inflammatory factors and the apoptosis of hippocampal neurons in mice with depression-like behaviors.

Our study provides evidence that silencing of lncRNA GAS5 could activate PI3K/AKT pathway to protect hippocampal neurons against damage in mice with depression-like behaviors by regulating the miR-26a/EGR1 axis.
Our study provides evidence that silencing of lncRNA GAS5 could activate PI3K/AKT pathway to protect hippocampal neurons against damage in mice with depression-like behaviors by regulating the miR-26a/EGR1 axis.
In this study, we investigated the association between plasma total homocysteine(tHcy) levels and the risk of early hemorrhagic transformation(HT) in patients with acute ischemic stroke(AIS).

Consecutive hospitalized participants whomettheinclusion criteriawere enrolled and grouped according to plasma tHcy levels. Participants were divided into a low homocysteine level(L-tHcy) group (<12 µmol/L) and a high homocysteine level group(H-tHcy) (≥ 12 µmol/L). Baseline computed tomography (CT) examination was performed. HT was determined via CT or magnetic resonance imaging within 1 to 3 days after admission.

A total of 1858 patients were screened and 1378 patients completed the this study(797 patients in the H-tHcy group and 581 patients in the L-tHcy group). HT incidence was 5.2% (30/581,) in the L-tHcy group and 11.2% (90/797) in the H-tHcy group(P<0.05). Binary logistic regression analysis showed that initial NIHSS score, tHcy levels, treatment with recombinant tissue plasminogen activator thrombolysis, systolic blood pressure on admission, glucose level on admission, smoking status and estimated glomerular filtration rate were independent risk factors for HT. Receiver operating characteristic analysis showed that tHcy level was a moderately sensitive and specific index to predict the incidence of HT, and theoptimal cutoff was 16.56 μmol/L (sensitivity 63.3%, specificity 41.3%).

Our study findings reveal that high plasma tHcy level is one independent risk factor associated with increased risk of early HT in patients with AIS.
Our study findings reveal that high plasma tHcy level is one independent risk factor associated with increased risk of early HT in patients with AIS.
Higher glycemia on admission has been associated with diffusion weighted imaging (DWI) lesions in patients with spontaneous intracerebral hemorrhage (sICH). However, the influence of longitudinal glycemia after admission and during a patient's hospitalization on DWI lesions in sICH has not been studied. Our aim was to compare longitudinal glycemia in sICH patients with and without DWI lesions.

Glycemia measurements were abstracted on participants enrolled in a prospective observational study examining predictors for DWI lesions in sICH. Univariate analysis was used to compare mean longitudinal glycemia in sICH patients with and without DWI lesions. Logistical regression was used to determine whether mean longitudinal glycemia was predictive of DWI lesions.

DWI lesions were found in 60 of the 121 (49.6%) participants. Mean time-to-MRI was 99.6h (SD±89). https://www.selleckchem.com/products/donafenib-sorafenib-d3.html During this time interval, 2,101 glucose measurements were analyzed with a median number of 7 (IQR 12, 1-261) measurements per patient. Mean longitudinal glycemia was higher in the DWI positive group compared to the DWI negative group until time-to-MRI (132mg/dL vs 122mg/dL, p = 0.03). Mean longitudinal glycemia was found to be predictive of DWI lesions (OR 1.02, 95% CI 1.005 to 1.035, p = 0.011).

Mean longitudinal glycemia was higher in sICH patients with DWI lesions compared to those without DWI lesions. Future research into the association between higher glycemia and DWI lesions in sICH may provide insight into a pathophysiologic mechanism.
Mean longitudinal glycemia was higher in sICH patients with DWI lesions compared to those without DWI lesions. Future research into the association between higher glycemia and DWI lesions in sICH may provide insight into a pathophysiologic mechanism.This study aimed to visualize differences in the distribution of citric acid, soluble sugars, and anthocyanins in strawberries at four different maturity stages (green to red strawberries) by matrix-assisted laser desorption/ionization time-of-flight imaging mass spectrometry (MALDI-TOF IMS). Results demonstrated citric acid and sugars are evenly distributed in the entire fruit at all maturity stages, while most of anthocyanins are mainly located in the periphery of fruit with increased abundance in red strawberries, indicating a correlation with the colour attributes. Sugar in red strawberries (11.92 brix) increased by two-fold compared to the green ones (6.23 brix). Finally, absolute quantitation of each compound from HPLC analyses support the quantitative results from MALDI-TOF IMS. The results provide a deeper understanding in the changes and distribution of phytochemicals during the growth of strawberries, and demonstrates the usefulness of IMS for plant breeding and postharvest technology.

1 hr ago


31). An early warning system may be implemented for cows with a large BW loss during early lactation based on milk FA profiles, but model performance should be improved, ideally by using the full FTIR milk spectra.
Aging is a multifactorial physiological phenomenon, in which a series of changes in the body composition occur, such as a decrease in muscle mass and bone mineral density and an increase in fat mass. This study aimed to determine the relationship of muscle mass, osteoporosis, and obesity with the strength and functional capacity of non-dependent people over 70 years of age.

A cross-sectional study was designed, whose study population was all people aged over 70 years, living independently and attending academic and recreational programs. Muscle strength and functional capacity of the participants were assessed by isometric exercises of lower and upper limbs and by four tests taken from the Senior Fitness Test, respectively. Bone mineral density, total mass, fat mass, total lean mass, arms lean mass, legs lean mass, and appendicular lean mass (ALM) was calculated by dual energy X-ray absorptiometry. Differences in muscle strength and functional capacity, according to the sex, muscle mass, mineral bone denspetition, a maximum right hand grip strength and maximum hand grip strength (the highest). Significantly higher values were observed in the maximal isometric biceps' strength in men with osteoporosis. Obese men had less isometric strength in the biceps and took longer to perform the chair stand test; Conclusions Men and women with an adequate amount of ALM adjusted for BMI obtained better results in tests of muscle strength and functional capacity. However, osteoporosis and obesity are not related to these parameters.This study examines the mechanisms of adsorption of anthocyanins from model aqueous solutions at pH values of 3, 6, and 9 by ion-exchange resins making the main component of heterogeneous ion-exchange membranes. This is the first report demonstrating that the pH of the internal solution of a KU-2-8 aromatic cation-exchange resin is 2-3 units lower than the pH of the external bathing anthocyanin-containing solution, and the pH of the internal solution of some anion-exchange resins with an aromatic (AV-17-8, AV-17-2P) or aliphatic (EDE-10P) matrix is 2-4 units higher than the pH of the external solution. This pH shift is caused by the Donnan exclusion of hydroxyl ions (in the KU-2-8 resin) or protons (in the AV-17-8, AV-17-2P, and EDE-10P resins). The most significant pH shift is observed for the EDE-10P resin, which has the highest ion-exchange capacity causing the highest Donnan exclusion. Due to the pH shift, the electric charge of anthocyanin inside an ion-exchange resin differs from its charge in the external solution. At pH 6, the external solution contains uncharged anthocyanin molecules. However, in the AV-17-8 and AV-17-2P resins, the anthocyanins are present as singly charged anions, while in the EDE-10P resin, they are in the form of doubly charged anions. Due to the electrostatic interactions of these anions with the positively charged fixed groups of anion-exchange resins, the adsorption capacities of AV-17-8, AV-17-2P, and EDE-10P were higher than expected. https://www.selleckchem.com/products/mevastatin.html It was established that the electrostatic interactions of anthocyanins with the charged fixed groups increase the adsorption capacity of the aromatic resin by a factor of 1.8-2.5 compared to the adsorption caused by the π-π (stacking) interactions. These results provide new insights into the fouling mechanism of ion-exchange materials by polyphenols; they can help develop strategies for membrane cleaning and for extracting anthocyanins from juices and wine using ion-exchange resins and membranes.For the first time, herein is reported the use of a magnetic core-shell support for a C-scorpionate metallic complex. The prepared hybrid material, that consists on the C-scorpionate iron(II) complex [FeCl2κ3-HC(pz)3] (pz, pyrazolyl) immobilized at magnetic core-shell particles (Fe3O4/TiO2), was tested as catalyst for the oxidation of secondary alcohols using the model substrate 1-phenylethanol. Moreover, the application of alternative energy sources (e.g., ultrasounds, microwaves, mechanical or thermal) for the peroxidative alcohol oxidation using the magnetic heterogenized iron(II) scorpionate led to different/unusual outcomes that are presented and discussed.
The purpose was to determine the association between HDP and cancer in a UK cohort.

Between 1993 and 1997, participants from the EPIC-Norfolk cohort attended baseline health-checks and completed questionnaires, where a history of HDP was collected. Incident cancer cases were identified through NHS record linkage until March 2016. Univariable and multivariable logistic regression analyses were employed to determine the association between HDP and odds of cancer, with adjustment for potential confounders including co-morbidities, sociodemographic, lifestyle and reproductive factors.

13,562 women were included after excluding prevalent cancer cases and women with no pregnancies. 2919 (21.5%) reported HDP and 2615 incident cancers occurred during mean follow up of 19 years. Median age (IQR) at baseline for incident cancer was 60.8 (±14.8) years. Among incident cancer cases, 578 (22.1%) had HDP. In multivariable analyses, HDP had odds ratio (OR) 1.06; 95% CI 0.95-1.18 for incident cancer. The ORs (95% CIs) for common site-specific cancers including breast, colorectal, lung, ovarian and endometrial cancers were 1.06 (0.88-1.28), 1.15 (0.92-1.45), 0.96 (0.68-1.35), 1.30 (0.93-1.83) and 1.16 (0.80-1.67).

We found no association between HDP and cancer risk. Further studies are required to confirm and account for any underlying genetic factors involved in pregnancy-related exposures and cancer risk.
We found no association between HDP and cancer risk. Further studies are required to confirm and account for any underlying genetic factors involved in pregnancy-related exposures and cancer risk.The paper presents the results of a students' survey carried out at "Vasile Alecsandri" University of Bacau, Romania, on the quality of educational process on online platforms in the context of the COVID-19 pandemic. The study was addressed to students from the Faculty of Engineering and the Faculty of Physical Education and Sports. The results of survey highlighted that most of students were satisfied with the measures taken by the university during the lockdown period and the way the teaching-learning-assessment process took place. However, some negative aspects were reported as lack of an adequate infrastructure for some students, less effective teacher-student communication and interaction, impossibility of performing practical applications, lack of socialization, lack of learning motivation, less objective examination (e.g., possibility of cheating), possibility of physical and mental health degradation (e.g., too much time spent in front of screens, installation of a sedentary lifestyle). Consequently, for the new academic year, effective, and efficient measures must be implemented by the management of the university to remove, as much as possible, these negative issues and to improve the performance of online educational process.

Videos

Sorry, no results were found.

People

Sorry, no results were found.

Circles

Sorry, no results were found.

Videos

Sorry, no results were found.

Posts

59 mins ago


Most of our knowledge is limited to their cholesterol-lowering influence and protective effect against cardiovascular disease. However, the world of plant sterols is significantly wider if we consider the thousands of publications released over the past 10 years.In this work, the use of a calibration satellite (L2-CalSat) flying in formation with a Cosmic Microwave Background (CMB) polarization mission in an orbit located at the second Lagrange point, is proposed. The new generation of CMB telescopes are expected to reach unprecedented levels of sensitivity to allow a very precise measurement of the B-mode of polarization, the curl-like polarization component expected from gravitational waves coming from Starobinski inflationary models. Due to the CMB polarized signal weakness, the instruments must be subjected to very precise calibration processes before and after launching. Celestial sources are often used as external references for calibration after launch, but these sources are not perfectly characterized. As a baseline option, L2-CalSat is based on the CubeSat standard and serves as a perfectly known source of a reference signal to reduce polarization measurements uncertainty. A preliminary design of L2-CalSat is described and, according to the scanning strategy followed by the telescope, the influence of the relative position between the spacecrafts in the calibration process is studied. This new calibration element will have a huge impact on the performance of CMB space missions, providing a significant improvement in the measurements accuracy without requiring new and costly technological developments.The detection of cancer biomarkers in the early stages could prevent cancer-related deaths significantly. Nanomaterials combined with biomolecules are extensively used in drug delivery, imaging, and sensing applications by targeting the overexpressed cancer proteins such as folate receptors (FRs) to control the disease by providing earlier treatments. In this investigation, biocompatible reduced graphene oxide (rGO) nanosheets combined with folic acid (FA)-a vitamin with high bioaffinity to FRs-is utilized to develop an electrochemical sensor for cancer detection. To mimic the cancer cell environment, FR-β protein is used to evaluate the response of the rGO-FA sensor. The formation of the rGO-FA nanocomposite was confirmed through various characterization techniques. A glassy carbon (GC) electrode was then modified with the obtained rGO-FA and analyzed via differential pulse voltammetry (DPV) for its specific detection towards FRs. Using the DPV technique, the rGO-FA-modified electrode exhibited a limit of detection (LOD) of 1.69 pM, determined in a linear concentration range from 6 to 100 pM. This excellent electrochemical performance towards FRs detection could provide a significant contribution towards future cancer diagnosis. Moreover, the rGO-FA sensing platform also showed excellent specificity and reliability when tested against similar interfering biomolecules. This rGO-FA sensor offers a great promise to the future medical industry through its highly sensitive detection towards FRs in a fast, reliable, and economical way.Identification of the protein targets of hit molecules is essential in the drug discovery process. Target prediction with machine learning algorithms can help accelerate this search, limiting the number of required experiments. However, Drug-Target Interactions databases used for training present high statistical bias, leading to a high number of false positives, thus increasing time and cost of experimental validation campaigns. To minimize the number of false positives among predicted targets, we propose a new scheme for choosing negative examples, so that each protein and each drug appears an equal number of times in positive and negative examples. We artificially reproduce the process of target identification for three specific drugs, and more globally for 200 approved drugs. For the detailed three drug examples, and for the larger set of 200 drugs, training with the proposed scheme for the choice of negative examples improved target prediction results the average number of false positives among the top ranked predicted targets decreased, and overall, the rank of the true targets was improved.Our method corrects databases' statistical bias and reduces the number of false positive predictions, and therefore the number of useless experiments potentially undertaken.Zijuan tea (Camellia sinensis var. assamica cv. Zijuan) is a unique purple tea. Recently, purple tea has drawn much attention for its special flavor and health benefits. However, the characteristic compounds of purple tea compared with green tea have not been reported yet. The present study employed a non-targeted metabolomics approach based on ultra-high performance liquid chromatography (UHPLC)-Orbitrap-tandem mass spectrometry (MS/MS) for comprehensive analysis of characteristic metabolites between Zijuan purple tea (ZJT) and Yunkang green tea (YKT). Partial least squares-discriminant analysis (PLS-DA) indicated that there are significant differences in chemical profiles between ZJT and YKT. https://www.selleckchem.com/ALK.html A total of 66 major differential metabolites included catechins, proanthocyanins, flavonol and flavone glycosides, phenolic acids, amino acids and alkaloids were identified in ZJT. Among them, anthocyanins are the most characteristic metabolites. Nine glycosides of anthocyanins and six glycosides of proanthocyanins were found to be significantly higher in ZJT than that in YKT. Subsequently, pathway analysis revealed that ZJT might generate anthocyanins and proanthocyanins through the flavonol and flavone glycosides. Furthermore, quantitative analysis showed absolutely higher concentrations of total anthocyanins in ZJT, which correlated with the metabolomics results. This study presented the comprehensive chemical profiling and the characterized metabolites of ZJT. These results also provided chemical evidence for potential health functions of ZJT.
In support of claims that their products have antioxidant properties, the food industry and dietary supplement manufacturers rely solely on the in vitro determination of the ORAC (oxygen radical antioxidant capacity) value, despite its acknowledged lack of any in vivo relevance. It thus appears necessary to use tests exploiting biological materials (blood, white blood cells) capable of producing physiological free radicals, in order to evaluate more adequately the antioxidant capacities of foods such as fruit and vegetable juices.

Two approaches to assessing the antioxidant capacities of 21 commercial fruit and vegetable juices were compared the ORAC assay and the "PMA-whole blood assay," which uses whole blood stimulated by phorbol myristate acetate to produce the superoxide anion. We described in another paper the total polyphenol contents (TPCs) and individual phenolic compound contents of all the juices were investigated.

Ranking of the juices from highest to lowest antioxidant capacity differed considerably according to the test used, so there was no correlation (
= 0.

1 hr ago


Although stroke is an uncommon complication of COVID-19, when present, it often results in significant morbidity and mortality. In COVID-19 patients, stroke was associated with older age, comorbidities, and severe illness.
Although stroke is an uncommon complication of COVID-19, when present, it often results in significant morbidity and mortality. In COVID-19 patients, stroke was associated with older age, comorbidities, and severe illness.
Accumulating evidences have demonstrated the roles of several long non-coding RNAs (lncRNAs) in depression. We aim to examine the capabilities of lncRNA growth arrest-specific transcript 5 (GAS5) on mice with depression-like behaviors and the mechanism of action.

Fifty-six healthy mice were selected for model establishment. Morris water maze test and trapeze test were performed for evaluating learning and memory ability. The binding relationship between lncRNA GAS5 and microRNA-26a (miR-26a) and the target relationship between miR-26a and EGR1 were verified by dual-luciferase reporter gene assay. The apoptosis of neurons in the hippocampal CA1 region of mice was detected by TUNEL staining. The expression of inflammatory factors, lncRNA GAS5, miR-26a, early growth response gene 1 (EGR1), phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) pathway- and apoptosis-related factors in hippocampal tissues was tested by RT-qPCR and western blot analysis.

miR-26a expression was down-regulated while EGR1 and lncRNA GAS5 expression were up-regulated in hippocampal tissues of mice with depression-like behaviors. LncRNA GAS5 specifically bound to miR-26a and miR-26a targeted EGR1. Silencing of lncRNA GAS5 curtailed the release of inflammatory factors and the apoptosis of hippocampal neuron of mice with depression-like behaviors. EGR1 suppressed PI3K/AKT pathway activation to promote the release of inflammatory factors and the apoptosis of hippocampal neurons in mice with depression-like behaviors.

Our study provides evidence that silencing of lncRNA GAS5 could activate PI3K/AKT pathway to protect hippocampal neurons against damage in mice with depression-like behaviors by regulating the miR-26a/EGR1 axis.
Our study provides evidence that silencing of lncRNA GAS5 could activate PI3K/AKT pathway to protect hippocampal neurons against damage in mice with depression-like behaviors by regulating the miR-26a/EGR1 axis.
In this study, we investigated the association between plasma total homocysteine(tHcy) levels and the risk of early hemorrhagic transformation(HT) in patients with acute ischemic stroke(AIS).

Consecutive hospitalized participants whomettheinclusion criteriawere enrolled and grouped according to plasma tHcy levels. Participants were divided into a low homocysteine level(L-tHcy) group (<12 µmol/L) and a high homocysteine level group(H-tHcy) (≥ 12 µmol/L). Baseline computed tomography (CT) examination was performed. HT was determined via CT or magnetic resonance imaging within 1 to 3 days after admission.

A total of 1858 patients were screened and 1378 patients completed the this study(797 patients in the H-tHcy group and 581 patients in the L-tHcy group). HT incidence was 5.2% (30/581,) in the L-tHcy group and 11.2% (90/797) in the H-tHcy group(P<0.05). Binary logistic regression analysis showed that initial NIHSS score, tHcy levels, treatment with recombinant tissue plasminogen activator thrombolysis, systolic blood pressure on admission, glucose level on admission, smoking status and estimated glomerular filtration rate were independent risk factors for HT. Receiver operating characteristic analysis showed that tHcy level was a moderately sensitive and specific index to predict the incidence of HT, and theoptimal cutoff was 16.56 μmol/L (sensitivity 63.3%, specificity 41.3%).

Our study findings reveal that high plasma tHcy level is one independent risk factor associated with increased risk of early HT in patients with AIS.
Our study findings reveal that high plasma tHcy level is one independent risk factor associated with increased risk of early HT in patients with AIS.
Higher glycemia on admission has been associated with diffusion weighted imaging (DWI) lesions in patients with spontaneous intracerebral hemorrhage (sICH). However, the influence of longitudinal glycemia after admission and during a patient's hospitalization on DWI lesions in sICH has not been studied. Our aim was to compare longitudinal glycemia in sICH patients with and without DWI lesions.

Glycemia measurements were abstracted on participants enrolled in a prospective observational study examining predictors for DWI lesions in sICH. Univariate analysis was used to compare mean longitudinal glycemia in sICH patients with and without DWI lesions. Logistical regression was used to determine whether mean longitudinal glycemia was predictive of DWI lesions.

DWI lesions were found in 60 of the 121 (49.6%) participants. Mean time-to-MRI was 99.6h (SD±89). https://www.selleckchem.com/products/donafenib-sorafenib-d3.html During this time interval, 2,101 glucose measurements were analyzed with a median number of 7 (IQR 12, 1-261) measurements per patient. Mean longitudinal glycemia was higher in the DWI positive group compared to the DWI negative group until time-to-MRI (132mg/dL vs 122mg/dL, p = 0.03). Mean longitudinal glycemia was found to be predictive of DWI lesions (OR 1.02, 95% CI 1.005 to 1.035, p = 0.011).

Mean longitudinal glycemia was higher in sICH patients with DWI lesions compared to those without DWI lesions. Future research into the association between higher glycemia and DWI lesions in sICH may provide insight into a pathophysiologic mechanism.
Mean longitudinal glycemia was higher in sICH patients with DWI lesions compared to those without DWI lesions. Future research into the association between higher glycemia and DWI lesions in sICH may provide insight into a pathophysiologic mechanism.This study aimed to visualize differences in the distribution of citric acid, soluble sugars, and anthocyanins in strawberries at four different maturity stages (green to red strawberries) by matrix-assisted laser desorption/ionization time-of-flight imaging mass spectrometry (MALDI-TOF IMS). Results demonstrated citric acid and sugars are evenly distributed in the entire fruit at all maturity stages, while most of anthocyanins are mainly located in the periphery of fruit with increased abundance in red strawberries, indicating a correlation with the colour attributes. Sugar in red strawberries (11.92 brix) increased by two-fold compared to the green ones (6.23 brix). Finally, absolute quantitation of each compound from HPLC analyses support the quantitative results from MALDI-TOF IMS. The results provide a deeper understanding in the changes and distribution of phytochemicals during the growth of strawberries, and demonstrates the usefulness of IMS for plant breeding and postharvest technology.

1 hr ago


31). An early warning system may be implemented for cows with a large BW loss during early lactation based on milk FA profiles, but model performance should be improved, ideally by using the full FTIR milk spectra.
Aging is a multifactorial physiological phenomenon, in which a series of changes in the body composition occur, such as a decrease in muscle mass and bone mineral density and an increase in fat mass. This study aimed to determine the relationship of muscle mass, osteoporosis, and obesity with the strength and functional capacity of non-dependent people over 70 years of age.

A cross-sectional study was designed, whose study population was all people aged over 70 years, living independently and attending academic and recreational programs. Muscle strength and functional capacity of the participants were assessed by isometric exercises of lower and upper limbs and by four tests taken from the Senior Fitness Test, respectively. Bone mineral density, total mass, fat mass, total lean mass, arms lean mass, legs lean mass, and appendicular lean mass (ALM) was calculated by dual energy X-ray absorptiometry. Differences in muscle strength and functional capacity, according to the sex, muscle mass, mineral bone denspetition, a maximum right hand grip strength and maximum hand grip strength (the highest). Significantly higher values were observed in the maximal isometric biceps' strength in men with osteoporosis. Obese men had less isometric strength in the biceps and took longer to perform the chair stand test; Conclusions Men and women with an adequate amount of ALM adjusted for BMI obtained better results in tests of muscle strength and functional capacity. However, osteoporosis and obesity are not related to these parameters.This study examines the mechanisms of adsorption of anthocyanins from model aqueous solutions at pH values of 3, 6, and 9 by ion-exchange resins making the main component of heterogeneous ion-exchange membranes. This is the first report demonstrating that the pH of the internal solution of a KU-2-8 aromatic cation-exchange resin is 2-3 units lower than the pH of the external bathing anthocyanin-containing solution, and the pH of the internal solution of some anion-exchange resins with an aromatic (AV-17-8, AV-17-2P) or aliphatic (EDE-10P) matrix is 2-4 units higher than the pH of the external solution. This pH shift is caused by the Donnan exclusion of hydroxyl ions (in the KU-2-8 resin) or protons (in the AV-17-8, AV-17-2P, and EDE-10P resins). The most significant pH shift is observed for the EDE-10P resin, which has the highest ion-exchange capacity causing the highest Donnan exclusion. Due to the pH shift, the electric charge of anthocyanin inside an ion-exchange resin differs from its charge in the external solution. At pH 6, the external solution contains uncharged anthocyanin molecules. However, in the AV-17-8 and AV-17-2P resins, the anthocyanins are present as singly charged anions, while in the EDE-10P resin, they are in the form of doubly charged anions. Due to the electrostatic interactions of these anions with the positively charged fixed groups of anion-exchange resins, the adsorption capacities of AV-17-8, AV-17-2P, and EDE-10P were higher than expected. https://www.selleckchem.com/products/mevastatin.html It was established that the electrostatic interactions of anthocyanins with the charged fixed groups increase the adsorption capacity of the aromatic resin by a factor of 1.8-2.5 compared to the adsorption caused by the π-π (stacking) interactions. These results provide new insights into the fouling mechanism of ion-exchange materials by polyphenols; they can help develop strategies for membrane cleaning and for extracting anthocyanins from juices and wine using ion-exchange resins and membranes.For the first time, herein is reported the use of a magnetic core-shell support for a C-scorpionate metallic complex. The prepared hybrid material, that consists on the C-scorpionate iron(II) complex [FeCl2κ3-HC(pz)3] (pz, pyrazolyl) immobilized at magnetic core-shell particles (Fe3O4/TiO2), was tested as catalyst for the oxidation of secondary alcohols using the model substrate 1-phenylethanol. Moreover, the application of alternative energy sources (e.g., ultrasounds, microwaves, mechanical or thermal) for the peroxidative alcohol oxidation using the magnetic heterogenized iron(II) scorpionate led to different/unusual outcomes that are presented and discussed.
The purpose was to determine the association between HDP and cancer in a UK cohort.

Between 1993 and 1997, participants from the EPIC-Norfolk cohort attended baseline health-checks and completed questionnaires, where a history of HDP was collected. Incident cancer cases were identified through NHS record linkage until March 2016. Univariable and multivariable logistic regression analyses were employed to determine the association between HDP and odds of cancer, with adjustment for potential confounders including co-morbidities, sociodemographic, lifestyle and reproductive factors.

13,562 women were included after excluding prevalent cancer cases and women with no pregnancies. 2919 (21.5%) reported HDP and 2615 incident cancers occurred during mean follow up of 19 years. Median age (IQR) at baseline for incident cancer was 60.8 (±14.8) years. Among incident cancer cases, 578 (22.1%) had HDP. In multivariable analyses, HDP had odds ratio (OR) 1.06; 95% CI 0.95-1.18 for incident cancer. The ORs (95% CIs) for common site-specific cancers including breast, colorectal, lung, ovarian and endometrial cancers were 1.06 (0.88-1.28), 1.15 (0.92-1.45), 0.96 (0.68-1.35), 1.30 (0.93-1.83) and 1.16 (0.80-1.67).

We found no association between HDP and cancer risk. Further studies are required to confirm and account for any underlying genetic factors involved in pregnancy-related exposures and cancer risk.
We found no association between HDP and cancer risk. Further studies are required to confirm and account for any underlying genetic factors involved in pregnancy-related exposures and cancer risk.The paper presents the results of a students' survey carried out at "Vasile Alecsandri" University of Bacau, Romania, on the quality of educational process on online platforms in the context of the COVID-19 pandemic. The study was addressed to students from the Faculty of Engineering and the Faculty of Physical Education and Sports. The results of survey highlighted that most of students were satisfied with the measures taken by the university during the lockdown period and the way the teaching-learning-assessment process took place. However, some negative aspects were reported as lack of an adequate infrastructure for some students, less effective teacher-student communication and interaction, impossibility of performing practical applications, lack of socialization, lack of learning motivation, less objective examination (e.g., possibility of cheating), possibility of physical and mental health degradation (e.g., too much time spent in front of screens, installation of a sedentary lifestyle). Consequently, for the new academic year, effective, and efficient measures must be implemented by the management of the university to remove, as much as possible, these negative issues and to improve the performance of online educational process.

1 hr ago


Moreover, by comparing the different positions of leaves in "Zijuan" and "Ziyan", we found that the pivotal genes regulating the biosynthesis of anthocyanins in "Zijuan" and "Ziyan" were different, and the degradation genes played different roles in the hydrolyzation of anthocyanins. These results provide further information on the molecular regulation of anthocyanin balance in tea plants.Yogurt has been widely used in weight-loss foods to prevent obesity, but its molecular nature remains unclear. https://www.selleckchem.com/products/l-name-hcl.html Lactate is a major ingredient of yogurt, while its cognate cell surface receptor GPR81 is highly expressed in adipose tissues in mammals. Here we hypothesized that dietary lactate supplementation might activate GPR81 to promote adipose browning. Studying mouse models, we observed that GPR81 was substantially lowered in adipose tissue of obese mice compared with that for lean ones, whereas its expression was markedly up-regulated by a β3-adrenergic receptor (β3-AR) agonist. The deficiency of GPR81 greatly attenuated experimental adipose browning and thermogenesis. Importantly, oral administration of lactate effectively induced adipose browning, enhanced thermogenesis, improved dyslipidemia, and protected mice against high-fat-diet-induced obesity. Mechanistically, p38 mitogen-activated protein kinase might serve as a key downstream effect or of GPR81. Collectively, our findings revealed a critical role of GPR81 in adipose browning and provided a new insight into obesity management by modulating lactate-GPR81 signaling axis.Heparan sulfate proteoglycans take part in crucial events of cancer progression, such as epithelial-mesenchymal transition, cell migration, and cell invasion. Through sulfated groups on their glycosaminoglycan chains, heparan sulfate proteoglycans interact with growth factors, morphogens, chemokines, and extracellular matrix (ECM) proteins. The amount and position of sulfated groups are highly variable, thus allowing differentiated ligand binding and activity of heparan sulfate proteoglycans. This variability and the lack of specific ligands have delayed comprehension of the molecular basis of heparan sulfate proteoglycan functions. Exploiting a tumor-targeting peptide tool that specifically recognizes sulfated glycosaminoglycans, we analyzed the role of membrane heparan sulfate proteoglycans in the adhesion and migration of cancer cell lines. Starting from the observation that the sulfated glycosaminoglycan-specific peptide exerts a different effect on adhesion, migration, and invasiveness of different cancer cell lines, we identified and characterized three cell migration phenotypes, where different syndecans are associated with alternative signaling for directional cell migration.While direct bandgap monolayer 2D transition metal dichalcogenides (TMDs) have emerged as an important optoelectronic material due to strong light-matter interactions, their multilayer counterparts exhibit an indirect bandgap resulting in poor photon emission quantum yield. We report strong direct bandgap-like photoluminescence at ∼1.9 eV from multilayer MoS2 grown on SrTiO3, whose intensity is significantly higher than that observed in multilayer MoS2/SiO2. Using high-resolution electron microscopy we observe interlayer twist and >8% increase in the van der Waals gap, which leads to weaker interlayer coupling. This affects the evolution of the band structure in multilayer MoS2 as probed by transient absorption spectroscopy, causing higher photo carrier recombination at the direct gap. Our results provide a platform that could enable multilayer TMDs for robust optical device applications.An easily accessible colorimetric and fluorescence probe 4-((3-chloro-1,4-dioxo-1,4-dihydronaphthalen-2-yl)amino)benzenesulfonamide (4CBS) was successfully developed for the selective and sensitive detection of Sn2+ in an aqueous solution. The sensing mechanism involves reduction of -C═O into -C-OH groups in 4CBS upon the addition of Sn2+, which initiates the fluorescence turn-on mode. A better linear relationship was achieved between fluorescence intensity and Sn2+ concentration in the range of 0-62.5 μM, with a detection limit (LOD) of 0.115 μM. The binding mechanism of 4CBS for Sn2+ was confirmed by Fourier transform infrared analysis, NMR titrations, and mass (electrospray ionization) spectral analysis. Likewise, the proposed sensing mechanism was supported by quantum chemical calculations. Moreover, bioimaging studies demonstrated that the chemosensing probe 4CBS is an effective fluorescent marker for the detection of Sn2+ in living cells and zebrafish. Significantly, 4CBS was able to discriminate between Sn2+ in human cancer cells and Sn2+ in normal live cells.The interplay of electronic excitations and structural changes in molecules impacts nonradiative decay and charge transfer in the excited state, thus influencing excited-state lifetimes and photocatalytic reaction rates in optoelectronic and energy devices. To capture such effects requires computational methods providing an accurate description of excited-state potential energy surfaces and geometries. We suggest time-dependent density functional theory using optimally tuned range-separated hybrid (OT-RSH) functionals as an accurate approach to obtain excited-state molecular geometries. We show that OT-RSH provides accurate molecular geometries in excited-state potential energy surfaces that are complex and involve an interplay of local and charge-transfer excitations, for which conventional semilocal and hybrid functionals fail. At the same time, the nonempirical OT-RSH approach maintains the high accuracy of parametrized functionals (e.g., B3LYP) for predicting excited-state geometries of small organic molecules showing valence excited states.Lithium-sulfur (Li-S) batteries are considered as one of the most prospective candidates for electric vehicles, due to their superior theoretical energy density and low cost. However, the issues of polysulfide ion (PS) shuttling and uncontrollable Li dendrite growth hindered their further application. Herein, a multifunctional nanoporous polybenzimidazole (PBI) membrane with well-controllable morphology was successfully designed and fabricated to address the aforementioned obstacles. In this design, the PBI membrane could offer strong chemical binding interaction with PS, thus applying dynamic adsorption toward PS as well as stable sulfur electrochemistry, which is further verified by experiments and density functional theory (DFT) simulation. Moreover, PBI membranes with high porosity and high electrolyte uptake capability can provide ample lithium storage space and abundant Li+ supplements to facilitate Li deposition and improve Li metal batteries' cyclic stability. Besides that, the PBI membrane has excellent mechanical and thermal stability and exclusive flame resistance, which guarantees the safety of the Li-S battery as well.

1 hr ago


These sensors were successfully applied for FLX assessment in different pharmaceutical formulations collected from the Egyptian local market. The obtained results agreed well with the acceptable recovery percentage and were better than those obtained by other previously reported routine methods.Diagnosis of periodontopathy is complex and includes defining the cause, type, stage, and grade of periodontitis. Therefore, alternative diagnostic methods are sought to indicate the progression of inflammation or to determine the effectiveness of therapy. Gingival crevicular fluid (GCF) biomarkers can be particularly useful because they most likely reflect the disease process of the periodontal tissues. However, the difficulty of collecting GCF for testing is the reason for the limited use in diagnostics. Because periodontitis is the primary source of nitrogen free radicals in the oral cavity, the aim of the study was to evaluate the biomarkers of nitrosative stress (nitric oxide, peroxynitrite, and S-nitrosothiols) in GCF, non-stimulated and stimulated saliva of 90 patients with periodontitis. The study group was divided into two subgroups, depending on the stage of the disease severity. We showed a significantly higher concentration of all assessed biomarkers in the non-stimulated and stimulated saliva of patients with periodontitis. However, significant changes in GCF has been shown only for peroxynitrite. The studied biomarkers did not correlate with clinical periodontal status, which probably results from their short-duration activity and the impact on a few factors in the oral cavity. Saliva and gingival fluid are not very useful in the differential diagnosis of periodontitis.Synthetic membranes containing asymmetrically shaped pores have been shown to rectify the ionic current flowing through the membrane. Ion-current rectification means that such membranes produce nonlinear current-voltage curves analogous to those observed with solid-state diode rectifiers. In order to observe this ion-current rectification phenomenon, the asymmetrically shaped pores must have pore-wall surface charge. Pore-wall surface charge also allows for electroosmotic flow (EOF) to occur through the membrane. We have shown that, because ion-current is rectified, EOF is likewise rectified in such membranes. This means that flow through the membrane depends on the polarity of the voltage applied across the membrane, one polarity producing a higher, and the opposite producing a lower, flow rate. As is reviewed here, these ion-current and EOF rectification phenomena are being used to develop new sensing technologies. Results obtained from an ion-current-based sensor for hydrophobic cations are reviewed. In addition, ion-current and EOF rectification can be combined to make a new type of device-a chemoresponsive nanofluidic pump. This is a pump that either turns flow on or turns flow off, when a specific chemical species is detected. Results from a prototype Pb2+ chemoresponsive pump are also reviewed here.Most double-stranded (ds) DNA phages utilize holin proteins to secrete endolysin for host peptidoglycan lysis. In contrast, several holin-independent endolysins with secretion sequences or signal-arrest-release (SAR) sequences are secreted via the Sec pathway. In this study, we characterized a novel lysis protein (M4Lys) encoded by the dsDNA phage BSPM4, whose lysis function is not dependent on either holin or the Sec pathway in vitro. In silico analysis of M4Lys revealed that it contains a putative virion protein domain and an unusual C-terminal transmembrane domain (TMD). Turbidity reduction assays and liquid chromatography-mass spectrometry using purified peptidoglycan showed that the virion protein domain of M4Lys has peptidoglycan lysis activity. In vitro overproduction of M4Lys in Escherichia coli revealed that M4Lys alone caused rapid cell lysis. Treatment of E. coli with a Sec inhibitor did not inhibit the lysis activity of M4Lys, indicating that the Sec pathway is not involved in M4Lys-mediated cell lysis. Truncation of the TMD eliminated the cell lysis phenomenon, while production of the TMD alone did not induce the cell lysis. All these findings demonstrate that M4Lys is a novel endolysin that has a unique mosaic structure distinct from other canonical endolysins and the TMD plays a critical role in M4Lys-mediated in vitro cell lysis.Skin manifestations of systemic disease and malignancy are extremely polymorphous. https://www.selleckchem.com/products/wzb117.html Clinicians should be familiarized with paraneoplastic dermatoses in order to perform an early diagnosis of the underlying neoplasm. Lack of familiarity with cutaneous clues of internal malignancy may delay diagnosis and treatment of cancer. In this review, we described several paraneoplastic dermatoses and discussed extensively two paradigmatic ones, namely paraneoplastic pemphigus and paraneoplastic dermatomyositis.An inhibitory effect on α-amylase and α-glucosidase is postulated for polyphenols. Thus, ingestion of those secondary plant metabolites might reduce postprandial blood glucose level (hyperglycemia), which is a major risk factor for diabetes mellitus type II. In addition to a previous study investigating structure-effect relationships of different phenolic structures, the effect of anthocyanins is studied in detail here, by applying an α-amylase activity assay, on the basis of the conversion of 2-chloro-4-nitrophenyl-4-O-ß-galactopyranosyl maltoside (GalG2CNP) and detection of CNP release by UV/Vis spectroscopy and isothermal titration calorimetry (ITC). All anthocyanin-3-glucosides showed a mixed inhibition with a strong competitive proportion, Kic less then 134 µM and Kiu less then 270 µM; however, the impact of the B-ring substitution was not statistically significant. UV/Vis detection failed to examine the inhibitory effect of acylated cyanidins isolated from black carrot (Daucus carota ssp. Sativus var. Autrorubens Alef.). However, ITC measurements reveal a much stronger inhibitory effect compared to the cyanidin-3-glucoside. Our results support the hypothesis that anthocyanins are efficient α-amylase inhibitors and an additional acylation with a cinnamic acid boosts the observed effect. Therefore, an increased consumption of vegetables containing acylated anthocyanin derivatives might help to prevent hyperglycemia.