We bring these results together in a phase diagram involving colloid-colloid repulsive interactions and fluid velocity.Nanophotonics based on high refractive index dielectrics relies on appreciable contrast between the indices of designed nanostructures and their immediate surrounding, which can be achieved by the growth of thin films on low-index substrates. Here we propose the use of high index amorphous gallium phosphide (a-GaP), fabricated by radio-frequency sputter deposition, on top of a low refractive index glass substrate and thoroughly examine its nanophotonic properties. Spectral ellipsometry of the amorphous material demonstrates the optical properties to be considerably close to crystalline gallium phosphide (c-GaP), with low-loss transparency for wavelengths longer than 650 nm. When nanostructured into nanopatches, the second harmonic (SH) response of an individual a-GaP patch is characterized to be more than two orders of magnitude larger than the as-deposited unstructured film, with an anapole-like resonant behavior. Numerical simulations are in good agreement with the experimental results over a large spectral and geometrical range. Furthermore, by studying individual a-GaP nanopatches through non-degenerate pump-probe spectroscopy with sub-10 fs pulses, we find a more than 5% ultrafast modulation of the reflectivity that is accompanied by a slower decaying free carrier contribution, caused by absorption. Our investigations reveal a potential for a-GaP as an adequate inexpensive and CMOS-compatible material for nonlinear nanophotonic applications as well as for photocatalysis.A phytochemical investigation of Aleurites moluccanus yielded one novel dinor-diterpenoid, aleuritin (1), along with a rare diterpenoid, aleuritone (2). Compound 1 has an unprecedented skeleton with a 6/6/5-fused tricyclic ring system. Compound 2 possesses a rare 6/6/5/3-fused tetracyclic skeleton, which is probably an artifact formed photochemically by the Norrish reaction. The structures of 1 and 2 were determined by spectroscopic methods (ECD, IR, mass, and NMR) and confirmed by single-crystal X-ray diffraction analyses. A plausible biogenetic pathway of 1 is proposed. Pharmacological study showed that these two compounds possessed mild in vitro anti-lymphangiogenic activity, which suppressed tube formation with IC50 values of 48.1 ± 1.8 and 34.2 ± 0.8 μg mL-1, respectively.Bottom-up approaches exploiting on-surface synthesis reactions allow atomic-scale precision in the fabrication of graphene nanoribbons (GNRs); this is essential for their technological applications since their unique electronic and optical properties are largely controlled by the specific edge structure. By means of a combined experimental-theoretical investigation of some prototype GNRs, we show here that high-resolution electron energy-loss spectroscopy (HREELS) can be successfully employed to fingerprint the details of the GNR edge structure. In particular, we demonstrate how the features of HREEL vibrational spectra - mainly dictated by edge CH out-of-plane modes - are unambiguously related to the GNR edge structure. Moreover, we single out those modes which are localized at the GNR termini and show how their relative intensity can be related to the average GNR length.The design of Earth-abundant and cost-effective electrocatalysts for highly active and stable electrochemical water splitting in practical production is the primary demand. Herein, bimetallic oxides anchored to three-dimensional (3D) porous conductive nickel foam (NF) are constructed using a simple in situ hydrothermal method for efficient overall water splitting. The vertically aligned Mn3O4/Fe2O3 heterojunction nanosheets have synergy between hierarchical metal oxides and heterogeneous interface, and show excellent performance toward the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in an alkaline environment. By adjusting the molar ratio of Fe Mn, the morphology, composition and electronic structure of MnFeO-NF-x composites (x represents the ratio of Fe Mn) can be adjusted to exhibit diverse catalytic activities. In particular, MnFeO-NF-0.4 (0.4 indicates the Fe Mn ratio of 0.4 1) and MnFeO-NF-0.8 display outstanding performance with ultralow overpotentials of 157 mV for the OER and 64 mV for the HER to achieve a current density of 10 mA cm-2, respectively. Furthermore, MnFeO-NF-0.4 and MnFeO-NF-0.8 are assembled into a water splitting electrolyzer, which can reach a current density of 10 mA cm-2 with a low voltage of 1.59 V. Interestingly, Mn-M (M = Co, Ni, and Mo) products can be obtained easily by using different metal salts, indicating the universality of the current one-pot hydrothermal method.Intriguing nanostructuring anomalies have been recently observed in imidazolium ionic liquids (ILs) near their glass transition points, where local density around a nanocaged solute progressively grows up with temperature. https://www.selleckchem.com/Bcl-2.html Herewith, we for the first time demonstrate experimentally and theoretically, that these anomalies are governed by alkyl chains of cations and crucially depend on their length. Electron Paramagnetic Resonance (EPR) spectroscopy on a series of ILs [Cnmim]BF4 (n = 0-12) shows that only the chains with n = 3-10 favor anomaly. Moreover, remarkable even vs. odd n peculiarities were systematically observed. Finally, similar anomaly was for the first time observed for a non-IL glass of dibutyl phthalate, which structurally mimics cations of imidazolium ILs. Therefore, such anomalous density behavior in a glassy state nanocage goes far beyond ILs and proves to be a more general phenomenon, which can be structurally tuned and rationally adjusted for various potential applications in nanoscale materials.Metallothioneins (MTs) are a group of cysteine-rich, universal, low molecular weight proteins distributed widely in almost all major taxonomic groups ranging from tiny microbes to highly organized vertebrates. The primary function of this protein is storage, transportation and binding of metals, which enable microorganisms to detoxify heavy metals. In the microbial world, these peptides were first identified in a cyanobacterium Synechococcus as the SmtA protein which exhibits high affinity towards rising level of zinc and cadmium to preserve metal homeostasis in a cell. In yeast, MTs aid in reserving copper and confer protection against copper toxicity by chelating excess copper ions in a cell. Two MTs, CUP1 and Crs5, originating from Saccharomyces cerevisiae predominantly bind to copper though are capable of binding with zinc and cadmium ions. MT superfamily 7 is found in ciliated protozoa which show high affinity towards copper and cadmium. Several tools and techniques, such as western blot, capillary electrophoresis, inductively coupled plasma, atomic emission spectroscopy and high performance liquid chromatography, have been extensively utilized for the detection and quantification of microbial MTs which are utilized for the efficient remediation and sequestration of heavy metals from a contaminated environment.